Rock Mechanics and Rock Engineering

, Volume 20, Issue 4, pp 261–275 | Cite as

Effect of simulated sampling disturbance on creep behaviour of rock salt

  • Z. Guessous
  • D. E. Gill
  • B. Ladanyi


This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results.

The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.


Plastic Deformation Civil Engineer Stress Level Rock Salt Complete Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubertin, M. (1988): La loi de comportement du sel: effet du cheminement des contraintes. Ph. D. Thesis (in preparation).Google Scholar
  2. Bérest, P., Nguyen Minh, D. (1983): Comportement Mécanique des Cavités Profondes de Stockage d'Hydrocarbures dans le Sel. Proceedings 5th Congress I. S. R. M., Vol. 2, Melbourne, D227–D231.Google Scholar
  3. Cuddy, J.J. (1970): Internal Stresses and Structures Developed During Creep. Metallurgical Transactions,1, 395–401.Google Scholar
  4. Djahanguiri, F., Gould, J. E., Mahtab, M. A. (1983): Status of Design of a Nuclear Waster Repository in Salt in the U.S.A. Proceedings 1st Int. Potash Tech. Conf., Saskatoon, 99–104.Google Scholar
  5. Dreyer, W. (1972): The Science of Rock Mechanics; Part 1: The Strength Properties of Rocks. Trans. Tech. Publications, 501.Google Scholar
  6. Dreyer, W., Borchert, H. (1955): Die meßtechnische Erfassung des Gebirgsdrucks. Kali und Steinsalz,1, 3–16.Google Scholar
  7. Friedman, M., Dula, W. F., Gangi, A. F., Gazonas, G. A. (1981): Structural Petrology of Experimentally Deformed Synthetic Rocksalt. Proceedings 1st Conf. on the Mechanical Behavior of Salt (Hardy, H. R., Jr., Langer, M., Eds.), Trans. Tech. Publications 1984, 19–36.Google Scholar
  8. Gangi, A. F., Parrish, D. K., Handin, J. (1984): Transient and Steady-State Deformation of Synthetic Rocksalt. Proceedings 1st Conf. on the Mechanical Behavior of Salt (Hardy, H. R., Jr., Langer, M., Eds.), Trans. Tech. Publications, 37–51.Google Scholar
  9. Guessous, Z. (1986): Effets du carottage sur les propriétés mécaniques du sel gemme. Montréal: Thèse Ph. D., Ecole Polytechnique, 312 p.Google Scholar
  10. Guessous, Z., Ladanyi, B., Gill, D. E. (1984): Effect of Sampling Disturbance on Laboratory Determined Properties of Rock Salt. Proceedings 2nd Conf. on the Mechanical Behavior of Salt, Hannover, Germany.Google Scholar
  11. Gupta, I., Li, J. C. M. (1970): Stress Relaxation, Internal Stress and Work Hardening in LiF and NaCl Crystals. Mater. Sci. and Eng.,6, 20–26.Google Scholar
  12. Hardy, H. R., Jr., Mangolds, A. (1979): Investigation of Residual Stresses in Salt. Proceedings 5th Int. Symp. on Salt, Northern Ohio Geological Society, 55–63.Google Scholar
  13. Heard, H. C. (1972): Steady-State Flow in Polycrystalline Halite at Pressure of 2 Kilobars. Geophysical Monograph Series,16, 191–209.Google Scholar
  14. Jonas, J. J. (1969): The back stress in high temperature deformation. Acta Metall.,17, 397–401.Google Scholar
  15. Kear, B. H., Pratt, P. L. (1958): Quenching Stresses and Strains in Ionic Crystals. Acta Met.,6, 457–461.Google Scholar
  16. King, M. S. (1973): Creep in Model Pillars of Saskatchewan Potash. Int. J. Rock Mech. Min. Sc.,10, 363–371.Google Scholar
  17. Ladanyi, B., Gill, D. E. (1981): Determination of Creep Parameters of Rock Salt by Means of a Borehole Dilatometer. Proceedings 1st Conf. on the Mechanical Behavior of Salt (Hardy, H. R., Jr., Langer, M., Eds.), Trans. Tech. Publications, 1984, 473–491.Google Scholar
  18. Ladanyi, B., Gill, D. E. (1983a): In Situ Determination of Creep Properties of Rock Salt. Proceedings 5th Cong. I. S. R. M., Melbourne, Vol. 1, A219–A225.Google Scholar
  19. Ladanyi, B., Gill, D. E. (1983b): In Situ Measurement of Creep Properties of Potash by a Borehole Dilatometer Test. Proceedings 1st Int. Potash Tech. Conf., Saskatoon, 267–273.Google Scholar
  20. Le Comte, P. (1965): Creep in Rock Salt. The J. Geol.,73 (no. 3), 469–485.Google Scholar
  21. Mraz, D. (1984): Solutions to Pillar Design in Plastically Behaving Rocks. CIM Bulletin,77 (no. 868), 55–62.Google Scholar
  22. Munson, D. L. (1979). Preliminary Deformation Mechanism Map for Salt (With Application to WIPP) SAND79-0076, Sandia Nat. Lab., Albuquerque, N. M.Google Scholar
  23. Munson, D. E., Dawson, P. R. (1982): A Work Hardening-Recovery Model of Transient Creep of Salt During Stress Loading and Unloading. In “Issues in Rock Mechanics”, SME-AIMMPE, New York, 299–306.Google Scholar
  24. Potts, E. L. J. (1964): An Investigation Into the Design of Room and Pillar Workings in Rock Salt. Trans. Institution of Min. Eng.,124 (no. 49), 27–47.Google Scholar
  25. Serata, S. Bellman, R. A., Jr. (1983). Development of the Serata Stress-Measuring System for Application to Both Hard-Brittle and Soft-Ductile Grounds. Proceedings 24th U. S. Symp. on Rock Mech., A. E. G., 343–358.Google Scholar
  26. Serata, S., McNamara, J. F. (1980): Numerical Modeling of Behavior of Caverns in Salt for Compressed Air Energy Storage. Report. prop. for Pacific Northwest Lab., No B-82290-A-P, 85 p.Google Scholar
  27. Serata, S., Tsai, F., McNamara, J. F. (1983): Field Experience with a Multiple-Piston Loading Borehole Probe. Proceedings 24th U. S. Symp. on Rock Mech., A. E. G., 359–369.Google Scholar
  28. Sherby, O. D., Frenkel, R., Nadeau, J., Dorn, J. E. (1954): Trans. TMS-AIME,200, 275.Google Scholar
  29. Thoms, R. L., Gehle, R. M. (1985): Borehole Tests to Predict Cavern Performance. Proceedings 6th Int. Symp. on Salt,2, 27–33.Google Scholar
  30. Wawersik, W. R., Hannum, D. W., Lauson, H. S. (1980): Compression and Extension Data for Dome Salt from West Hackberry, Louisiana. Sandia National Laboratories, SAND79-0668, 35 p.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Z. Guessous
    • 1
  • D. E. Gill
    • 1
  • B. Ladanyi
    • 1
  1. 1.École PolytechniqueMontréalCanada

Personalised recommendations