Journal of Protein Chemistry

, Volume 9, Issue 4, pp 417–425 | Cite as

Characterization of a GDP-sensitive phosphorylation in plasma membranes ofD. discoideum

  • Alison Anschutz
  • Claudette Klein
Article

Abstract

In a previous study, we reported the GDP-dependent phosphorylation of a 36 kD membrane protein, p36, inD. discoideum membranes prepared from starved (aggregation competent) cells (Anschutzet al., 1989). Here we show that p36 can be phosphorylated when membranes are supplied either ATP or GTP as the phosphate donor, but that a greater level of p36 phosphorylation is achieved with GTP. The rate of phosphorylation of p36, using either nucleotide triphosphate, is enhanced by GDP. This reflects a decrease in the apparentKm of the enzyme for the particular nucleotide triphosphate. p36 can also be phosphorylated in membranes prepared from vegetative cells. However, the ability of GDP to stimulate p36 phosphorylation is not observed in vegetative cell membranes. Competition experiments indicate that there are also developmental differences in the nucleotide triphosphate site(s) available to phosphorylate p36.

Key words

Phosphorylation GDP-stimulated developmental regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anschutz, A., Howlett, A., and Klein, C. (1988).Proc. Natl. Acad. Sci. USA 86, 3665–3668.Google Scholar
  2. 2.
    Beebe, S. J., and Corbin, J. D. (1986). InThe Enzymes: Control by Phosphorylation (Boge, P. D., and Krebs, E. G., eds.), Academic, New York, Vol. 17, pp. 43–111.Google Scholar
  3. 3.
    Blackshear, P. J., Nairn, A. G., and Keeo, J. F. (1988).FASEB J. 14 2957–2969.Google Scholar
  4. 4.
    Edelman, A., Blumenthal, D., and Krebs, E. G. (1987).Annu. Rev. Biochem. 56, 567–613.Google Scholar
  5. 5.
    Ferguson, K. M., Hegashinima, T., Smigel, M. D., and Gilman, A. G. (1986).J. Biol. Chem. 261, 7393–7399.Google Scholar
  6. 6.
    Hunter, T. (1987).Cell 50, 823–829.Google Scholar
  7. 7.
    Juliani, M. H., Brusca, J., and Klein, C. (1981).Dev. Biol. 83, 114–121.Google Scholar
  8. 8.
    Juliani, M. H., and Klein, C. (1981).J. Biol. Chem. 256, 613–617.Google Scholar
  9. 9.
    Khachatrian, L., Howlett, A., and Klein, C. (1985).J. Cyc. Nuc. Prot. Phos. Res. 10, 179–188.Google Scholar
  10. 10.
    Khachatrian, L., Howlett, A., and Klein, C. (1987).Biochim. Biophys. Acta 927, 235–239.Google Scholar
  11. 11.
    Laemmli, U. K. (1970).Nature (London) 227, 680–685.Google Scholar
  12. 12.
    Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.Google Scholar
  13. 13.
    Meier, K., and Klein, C. (1988).Proc. Natl. Acad. Sci. USA,85, 2181–2185.Google Scholar
  14. 14.
    Neer, E. J., and Salter, R. S. (1981).J. Biol. Chem. 256, 12,102–12,107.Google Scholar
  15. 15.
    Shenolikar, S. (1987).J. Cyclic Nucleotide Protein Phosphorylation Res. 11, 531–541.Google Scholar
  16. 16.
    Shenolikar, S. (1988).FASEB J. 12, 2753–2764.Google Scholar
  17. 17.
    Sugimoto, Y., Erikson, E., Graziani, Y., and Erikson, R. L. (1985).J. Biol. Chem. 260, 13,838–13,843.Google Scholar
  18. 18.
    Sussman, M. (1966). InMethods in Cell Physiology (Prescott, B. N., ed.), Academic, New York, Vol. 2, pp. 397–410.Google Scholar
  19. 19.
    Taylor, S. S., and First, E. A. (1984).J. Biol. Chem. 259, 4011–4014.Google Scholar
  20. 20.
    Watts, D. J., and Ashworth, J. M. (1970).Biochem. J. 119, 171–174.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Alison Anschutz
    • 1
  • Claudette Klein
    • 1
  1. 1.E. A. Doisy Department of Biochemistry and Molecular BiologySt. Louis University Medical SchoolSt. Louis

Personalised recommendations