Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 5, pp 983–996 | Cite as

Evaluation of electroactive intermediate states in anodic O2 evolution at chemically formed nickel oxide: Comparison with behaviour at nickel metal anodes

  • Tong-Chang Liu
  • B. E. Conway
Papers

Abstract

The behaviour of the kinetically involved intermediate states arising in the electrocatalysis of anodic oxygen evolution at chemically formed, high-area nickel oxide (NiO·OH) films on nickel metal as substrate is examined by means of analysis of potential (V) decay transients, following interruption of anodic polarization currents at various overpotentials. The potential decay behaviour is treated in terms of the dependence ofV(t) on log (time,t), and of ln (−dV/dt) as f[V(t)]. The pseudocapacitance associated with the potential-dependence of the coverage or surface density of the overpotential-deposited species involved as intermediates in the reaction at the oxide electrode surface is evaluated jointly from the potential decay and Tafel polarization behaviour, following procedures developed recently.

In anodic O2 evolution on oxide surfaces, such as NiO·OH, the intermediate states in the kinetics of the reaction are to be identified as OH or O species coupled with potential-dependent Ni(III) and Ni(IV) oxidation states of nickel, and the surface density of these states can be evaluated experimentally.

The results obtained for anodic O2 evolution on the chemically formed nickel oxide films are compared with the behaviour at anodically formed thin oxide films on nickel metal.

Keywords

Oxide Film Intermediate State Surface Density Nickel Oxide Anodic Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. E. Frown, M. N. Mahmood, A. K. Turner, S. M. Hall and P. D. Rogarty,Int. J. Hydrogen Energy 7 (1982) 405.Google Scholar
  2. [2]
    M. H. Miles, G. Kissel, P. W. T. Lu and S. Srinivasan,J. Electrochem. Soc. 123 (1976) 332; see also ‘Comprehensive Treatise on Electrochemistry’, Vol. 2, various chapters, (edited by E. Yeager, J. O'M. Bockris and B. E. Conway), Plenum Publ. Corp., New York (1981).Google Scholar
  3. [3]
    B. E. Conway, H. A. Kozlowska, B. V. Tilak and M. A. Sattar,J. Electrochem. Soc. 130 (1983) 1825.Google Scholar
  4. [4]
    Proc. VIth World Hydrogen Energy Conference, Vienna (1986), Pergamon Press (1987).Google Scholar
  5. [5]
    B. E. Conway and L. Bai,J. Chem. Soc., Faraday Trans. 1 81 (1985) 1841.Google Scholar
  6. [6]
    , in Proc. Vth World Hydrogen Energy Conference, Toronto, Canada (1984), Marcel Dekker, New York (1985) p. 879.Google Scholar
  7. [7]
    D. A. Harrington, L. Bai and B. E. Conway,J. Electroanal. Chem. 221 (1987) 1.Google Scholar
  8. [8]
    H. B. Morley and F. E. W. Wetmore,Can. J. Chem. 34, (1956) 359.Google Scholar
  9. [9]
    B. V. Tilak and B. E. Conway,Electrochim. Acta 21 (1976) 745.Google Scholar
  10. [10]
    22 (1977) 1167.Google Scholar
  11. [11]
    R. D. Armstrong and M. Henderson,J. Electroanal. Chem. 39 (1972) 81.Google Scholar
  12. [12]
    B. V. Tilak, C. Rader and B. E. Conway,Electrochim. Acta 21 (1976) 745.Google Scholar
  13. [13]
    22 (1977) 1167.Google Scholar
  14. [14]
    A. G. C. Kobussen and C. Mesters,J. Electroanal. Chem. 115 (1980) 131.Google Scholar
  15. [15]
    A. G. C. Kobussen, H. Willems and G. H. Broers,142 (1982) 67, 85.Google Scholar
  16. [16]
    J. F. Armstrong and J. A. V. Butler,Trans. Faraday Soc. 29 (1933) 1261.Google Scholar
  17. [17]
    B. E. Conway and P. L. Bourgault,Can. J. Chem. 38 (1960) 1557.Google Scholar
  18. [18]
    40 (1962) 1690.Google Scholar
  19. [19]
    S. Trasatti,J. Electroanal. Chem. 111 (1980) 125.Google Scholar
  20. [20]
    H. Tamura,Denki Kagaku 48 (1980) 173.Google Scholar
  21. [21]
    A. Tseung,Electrochim. Acta 22 (1977) 31.Google Scholar
  22. [22]
    P. Rasiyah and A. C. C. Tseung,J. Electrochem. Soc. 131 (1984) 803.Google Scholar
  23. [23]
    G. W. D. Briggs, E. Jones and W. F. K. Wynne-Jones,Trans. Faraday Soc.,51 (1955) 1433.Google Scholar
  24. [24]
    E. Gileadi and B. E. Conway,J. Chem. Phys. 39 (1963) 3420.Google Scholar
  25. [25]
    J. Weininger and M. W. Breiter,J. Electrochem. Soc. 110 (1963) 484.Google Scholar
  26. [26]
    111 (1964) 707.Google Scholar
  27. [27]
    M. A. Sattar and B. E. Conway, Performance Forecast of Selected Static Energy Conversion Devices, 29th Meeting of ARGARD Propulsion and Energetics Panel, Liège, Belgium, June, 1967, Conference Proc. (edited by G. W. Sherman and L. Devon), US Air Force Aero Propulsion Lab., Dept. of the Air Force, Washington, DC, pp. 79–124.Google Scholar
  28. [28]
    B. E. Conway and E. Gileadi,Can. J. Chem. 40 (1962) 1933.Google Scholar
  29. [29]
    B. E. Conway and P. L. Bourgault,37 (1959) 292.Google Scholar
  30. [30]
    F. Kornfeil, Proc. Ann. Battery Research and Development Conference, 12th Conference US Army Signal Corps. (1958).Google Scholar
  31. [31]
    J. O'M. Bockris,J. Chem. Phys. 24 (1956) 817.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Tong-Chang Liu
    • 1
  • B. E. Conway
    • 1
  1. 1.Chemistry DepartmentUniversity of OttawaOttawaCanada

Personalised recommendations