Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 10, pp 978–986 | Cite as

Effect of some dialkyl-, diaryl-, and diarylalkyl-disulphide derivatives on copper electrodeposition

  • D. Stoychev
  • I. Vitanova
  • R. Bujukliev
  • N. Petkova
  • I. Popova
  • I. Pojarliev
Papers

Abstract

The effect of straight-chained di(ω-sulphoalkyl) disulphides and of diphenyl, dinaphthyl, dibenzyl, or dinaphthylmethyl disulphides with anionic (sulpho), cationic (dimethylamino), or nonionogenic (hydroxy) substituents on the overpotential of deposition of copper from sulphuric acid electrolytes and on the differential capacity of the electric double layer on polycrystalline copper surfaces have been studied. With few exceptions, the sulphoalkyl and sulphoaryl derivatives exhibit a depolarizing effect, the magnitude of which is related to the negative charge of the sulphide sulphur atoms. By contrast, the benzyl and naphthylmethyl derivatives produce strong polarization, more pronounced with dimethylamino compounds, as well as dimethylaminoaryl disulphides. The effect of the disulphides studied on the differential capacity is extremely varied. Four types of concentration dependencies are observed: monotonic increase or decrease, or the appearance of a minimum or maximum. No simple relationship between the structure of disulphide and the pattern of behaviour is apparent. Generally, the alkane derivatives increase the capacity with the exception of di-(3-sulphopropyl) disulphide, while all the aromatic ones, with the exception of di-(p-sulphobenzyl) disulphide decrease it.

Keywords

Benzyl Sulphuric Acid Diphenyl Electric Double Layer Disulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    US Patent 3 328 273 (1967); 3 770 598 (1973); 3 956 079 (1976); 3 956 084 (1976); 3 956 120 (1976).Google Scholar
  2. [2]
    DDR Patent 82 858 (1970).Google Scholar
  3. [3]
    Bulg. Patent 20 924 (1973).Google Scholar
  4. [4]
    US Patent 4 009 087 (1977); 4 036 710 (1977); 4 110 176 (1978); 4 272 335 (1981); 4 430 173 (1984); 4 490 220 (1984).Google Scholar
  5. [5]
    Bulg. Patent 40 750 (1985).Google Scholar
  6. [6]
    Bulg. Patentreg. n. 89 297 (1989).Google Scholar
  7. [7]
    Bulg. Patentreg. n. 89 298 (1989).Google Scholar
  8. [8]
    A. A. Patatzkas, L. Yu. Valentelis and Yu. Yu. Matulis,Tr. AN Lit. SSR, Series B,82(3) (1974) 45.Google Scholar
  9. [9]
    D. Stoychev and S. Rashkov,Comm. Chem., Bulg. Acad. Sci. 9 (1976) 618;ibid. Comm. Chem., Bulg. Acad. Sci. 633;ibid. Comm. Chem., Bulg. Acad. Sci. 653.Google Scholar
  10. [10]
    L. Yu. Valentelis, Z. P. Skarzhinskene and E. L. Matulenis,Tr. AN Lit. SSR, Series B,116 (1) (1980) 11.Google Scholar
  11. [11]
    L. I. Antropov, M. V. Nechai, E. Kh. Ignatenko and V. S. Nitzevich,Zashchita Metallov 15 (1979) 474.Google Scholar
  12. [12]
    A. Blatt, (Ed.), ‘Organic Syntheses’, Coll. Vol. 2, Flushing, New York (1946) p. 558.Google Scholar
  13. [13]
    C. H. Schramm, H. Lemaire and R. H. Karlson,J. Am. Chem. Soc. 77 (1955) 6231.Google Scholar
  14. [14]
    R. T. Buyukliev, I. G. Pojarlieff, A. H. Koedjikov and D. S. Stoychev,Comm. Dept. Chem., Bulg. Acad. Sci. 23 (1990) 456.Google Scholar
  15. [15]
    E. A. Budnitzkaya, D. I. Leikis, E. S. Sevastianov and A. I. Shchurpach,Elektrokhimiya 2 (1966) 501.Google Scholar
  16. [16]
    D. Stoychev, I. Vitanova, S. Rashkov and T. Vitanov,Surf. Technol. 7 (1978) 427.Google Scholar
  17. [17]
    D. Stoychev and S. Rashkov,Compt. Rend. Acad. Bulg. Sci. 26 (1973) 427.Google Scholar
  18. [18]
    B. B. Damaskin and B. P. Afanaséev,Elektrokhimiya 13 (1977) 1099.Google Scholar
  19. [19]
    R. Parsons,Proc. Roy. Soc. A 261 (1961) 79.Google Scholar
  20. [20]
    V. S. Krylov and I. F. Fishtik,Elektrokhimiya 17 (1981) 787.Google Scholar
  21. [21]
    Yu. M. Loshkarev, N. B. Gudin, A. Ya. Pikelényi and V. F. Vargalyuk,Zh. Prikl. Khim. 57 (1984) 539.Google Scholar
  22. [22]
    A. F. Vozisov and V. N. Lapp,36 (1963) 1515.Google Scholar
  23. [23]
    V. N. Titova, S. A. Smirnova and A. T. Bagramyan,Elektrokhimiya 10 (1974) 734.Google Scholar
  24. [24]
    D. Stoychev, I. Vitanova, T. Vitanov and S. Rashkov,Compt. Rend. Acad. Bulg. Sci. 32 (1979) 1515.Google Scholar
  25. [25]
    D. Stoychev, I. Vitanova, P. Stefanov, to be published.Google Scholar
  26. [26]
    I. M. Kolthoff and Y. Okinawa,J. Am. Chem. Soc. 81 (1959) 2296.Google Scholar
  27. [27]
    R. P. Bell, ‘The Proton in Chemistry’, 2nd ed. Cornell Univ. Press, Ithaca, NY (1973) pp. 98–101.Google Scholar
  28. [28]
    T. Kuang-Chih,Acta Chim. Sinica 32 (1966) 107.Google Scholar
  29. [29]
    B. B. Damaskin, A. A. Petrii and V. V. Batrakov, ‘Adsorbtziya organicheskikh soedineni’, Nauka, Moskva (1968) p. 155 and p. 158.Google Scholar
  30. [30]
    W. Potsch and K. Schwabe,J. Prakt. Chem. 18 (1962) 1.Google Scholar
  31. [31]
    M. Ohsaku and N. L. Allinger,J. Phys. Chem. 92 (1988) 4591.Google Scholar
  32. [32]
    D. Stoychev, I. Vitanova, R. Buyukliev, N. Petkova, I. Popova and I. Pojarliev,J. Appl. Electrochem. 22 (1992) 987.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • D. Stoychev
    • 1
  • I. Vitanova
    • 1
  • R. Bujukliev
    • 2
  • N. Petkova
    • 1
  • I. Popova
    • 1
  • I. Pojarliev
    • 2
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations