Journal of Applied Electrochemistry

, Volume 22, Issue 6, pp 553–557 | Cite as

The numerical inversion of the Laplace transform applied to impedance spectroscopy

  • B. Aurian-Blajeni


Numerical inversion of the Laplace transform extends the use of results obtained by impedance spectroscopy to evaluation of the time response of electrochemical systems. Based on impedance spectroscopy results the characteristics of the electrical impulses (shape, duration, etc.) can be tailored by computer experiments so that a desired behavior of electrodes is achieved. The technique can also be used for optimization of the preparation parameters with respect to electrode performance.


Spectroscopy Physical Chemistry Time Response Impedance Spectroscopy Computer Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. R. Macdonald, ‘Impedance Spectroscopy’, Ed., Wiley Interscience, New York (1987).Google Scholar
  2. [2]
    I. D. Raistrick,Ann. Rev. Mat. Sci. 16 (1986) 343.Google Scholar
  3. [3]
    I. Epelboin, C. Gabrielli, M. Keddam and N. Takenouti, in ‘Comprehensive Treatise of Electrochemistry’, (edited by J. O'M. Bockris, B. E. Conway, E. Yeager, and R. E. White) vol. 4, Plenum, New York (1981) p. 151.Google Scholar
  4. [4]
    L. S. Robblee and T. L. Rose, in ‘Neural Prostheses’ (edited by W. F. Agnew and D. B. McCreery) Prentice Hall, Englewood Cliffs (1990) and references therein.Google Scholar
  5. [5]
    R. Bellman, R. E. Kalaba, and J. A. Lockett, ‘Numerical Inversion of the Laplace Transform’, American Elsevier, New York (1966).Google Scholar
  6. [6]
    B. S. Garbow, G. Giunta, J. N. Lyness, and A. Murli,ACM Trans. Math. Soft. 14 (1988) 171.Google Scholar
  7. [7]
    R. Piessens and R. Huysmans,10 (1984) 348.Google Scholar
  8. [8]
    P. Durbin,Comp. J. 17 (1974) 371.Google Scholar
  9. [9]
    B. Aurian-Blajeni, X. Beebe, R. D. Rauh, and T. L. Rose,Electrochimica Acta 34 (1989) 795.Google Scholar
  10. [10]
    B. Aurian-Blajeni, M. M. Boucher, A. G. Kimball, and L. S. Robblee,J. Mater. Res. 4 (1989) 440.Google Scholar
  11. [11]
    A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods’, J. Wiley & Sons, New York (1980).Google Scholar
  12. [12]
    R. de Levie,Adv. Electrochem., Electrochem. Engn. 6 (1967) 329.Google Scholar
  13. [13]
    L. Nyikos and T. Pajkossy,J. Electrochem. Soc. 133 (1986) 2061.Google Scholar
  14. [14]
    P. N. Sen, C. Scala, and M. H. Cohen,Geophysics 46 (1981) 781.Google Scholar
  15. [15]
    L. S. Robblee, M. J. Mangaudis, E. D. Lasinsky, A. G. Kimball, and S. B. Brummer,Mat. Res. Soc., Proc 55 (1986) 303.Google Scholar
  16. [16]
    J. R. Bartlett, R. W. Doty, Sr., B. B. Lee, N. Negrão, and W. H. Overman, Jr.,Brain Behav. Evol. 14 (1977) 46.Google Scholar
  17. [17]
    B. Aurian-Blajeni, A. G. Kimball, L. S. Robblee, G. L. M. K. S. Kahanda, and M. Tomkiewicz,J. Electrochem. Soc. 134 (1987) 2637.Google Scholar
  18. [18]
    S. Gottesfeld and J. D. E. McIntyre,126 (1979) 742.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • B. Aurian-Blajeni
    • 1
  1. 1.ChemLogicBellinghamUSA

Personalised recommendations