Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 6, pp 506–511 | Cite as

Voltammetric study of plating baths for electrodeposition of Co-W amorphous alloys

  • K. Wikiel
  • J. Osteryoung
Papers

Abstract

Cyclic voltammetry and chronoamperometry at glassy carbon and platinum microdisc electrodes have been used to study the electrodeposition of Co−W amorphous alloys. Voltammetric results show that cathodic deposition of Co−W alloy is accompanied by hydrogen evolution and the efficiency of Co−W electrodeposition does not exceed 20%. Voltammetric behaviour of cobalt (II) and tungstate in ammonium citrate solution depend strongly on composition of the plating bath. The concentration of Co(II) ions can be monitoredin situ during electroplating by means of anodic stripping voltammetry at a platinum microelectrode. The deposit of the alloy on the microelectrode is stable in the atmosphere and thus can be stored for subsequent comparison with a deposit obtained later in the life of the working bath.

Keywords

Hydrogen Atmosphere Ammonium Platinum Cobalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. E. Luborsky, ed., “Amorphous Metallic Alloys’, Butterworths, London (1983).Google Scholar
  2. [2]
    S. R. Nagel, “Advanced Chemical Physics, I’, (edited by Prigogne and S. A. Rice vol. 5, Wiley, New York (1982), pp. 227–75.Google Scholar
  3. [3]
    M. D. Archer, C. C. Corke and B. H. Harji,Electrochim. Acta 32 (1987) 13.Google Scholar
  4. [4]
    P. C. Searson, P. V. Nagaskar and R. M. Latanision, in ‘Modern Aspects of Electrochemistry’, (edited by R. E. White, J. O'M. Bockris, and B. E. Conway), vol. 21, Plenum Press, New York (1990), pp. 121–61.Google Scholar
  5. [5]
    G. A. Croopnick and D. M. Scruggs',US patent 4 529 668 (1985).Google Scholar
  6. [6]
    T. Omo, H. Yamamoto and H. L. Glass,J. Electrochem. Soc. 119 (1972) 168.Google Scholar
  7. [7]
    T. Watanabe,new Materials New Processes 3 (1985) 307.Google Scholar
  8. [8]
    M. Ogata,Kinzoku Hyomen Gijutsu 39 (1988) 169;CA 109: 13505n.Google Scholar
  9. [9]
    T. Watanabe,Hyomen Gijutsu 40 (1989) 375;CA 110: 197365s.Google Scholar
  10. [10]
    A. Budniok and J. Kupka,Electrochim. Acta 34 (1989) 871.Google Scholar
  11. [11]
    M. Donten and J. Osteryoung,J. Appl. Electrochem. 21 (1991) 496.Google Scholar
  12. [12]
    J. N. Howarth and D. Pletcher,18 (1989) 644.Google Scholar
  13. [13]
    E. Chassing, K. Vu Quang and R. Wiart,18 (1989) 839.Google Scholar
  14. [14]
    A. T. Vas'ko, ‘Encylopedia of Electrochem. of Elements’, (edited by A. J. Bard), vol. 5, Marcel Dekker, New York (1976).Google Scholar
  15. [15]
    A. T. Vas'ko, ‘Standard Potential in Aqueous Solution’, (edited by A. J. Bard, R. Parsons, and J. Jordon), Marcel Dekker, New York (1985), p. 486.Google Scholar
  16. [16]
    J. N. Howarth and D. Pletcher,J. Chem. Soc. Faraday Trans. 183 (1987) 2787.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. Wikiel
    • 1
  • J. Osteryoung
    • 1
  1. 1.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations