Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 6, pp 501–505 | Cite as

Metallo-organic deposition of tungsten oxide films from alkylammonium tungstate solutions

  • A. M. Mance
  • M. A. Habib
  • S. P. Maheswari
  • S. J. Simko
Papers

Abstract

This paper describes a simple and inexpensive metallo-organic deposition (MOD) process for forming electrochromic tungsten oxide (WO3) films on glass. The thin films of WO3 were made by air firing (500–700°C) films from xylene/2-propanol solutions of bis-(di-n-octylammonium) tetratungstate, [(n-C8H17)2NH2]2[W4O13]. The process coats glass with undoped films ranging in colour from faint yellow to dark brown, and can be used to make gradients of these colours. The colour is determined by the firing parameters and results from residual carbon and tungsten suboxides in the film due to incomplete firing. Increased firing temperatures or longer firing times removes the carbon and produces films with higher crystallinity. Electrochemical doping with acid (H+) switches the colour gradient films to a uniformly blue colour.

Keywords

Tungsten Oxide Film High Crystallinity Tungsten Oxide Firing Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. M. Lambert,Sol. Energy Mater. 11 (1984) 1.Google Scholar
  2. [2]
    W. Faughnan, R. S. Crandall and P. M. Heyman,RCA Review 36 (1975) 177.Google Scholar
  3. [3]
    R. J. Colton, A. M. Guzman and J. Wayne Rabalais,Acc. Chem. Res. 11 (1978) 170.Google Scholar
  4. [4]
    R. Le Bihan, G. Grandet and S. Paoli, ‘Preparation and Study of Tungsten Oxide Thin Films’,Vide Couches Minces, 201 (Suppl. Proc. Int. Vac. Congr., VI), (1980) 409.Google Scholar
  5. [5]
    E. Erben, A. Muehlratzer, B. Tihanyi and B. Cornils,Sol. Energy Mater. 9 (1983) 281.Google Scholar
  6. [6]
    C. E. Tracy and D. K. Benson,J. Vac. Sci. Technol. A 4 (1986) 2377.Google Scholar
  7. [7]
    R. W. Vest, ‘Metallo-Organic Materials for Improved Thick Film Reliability’, Contract No. N00163-80-C-0449, Naval Avionics Center, Feb. 15 (1982).Google Scholar
  8. [8]
    J. V. Mantese, A. L. Micheli, A. H. Hamdi and R. W. Vest, ‘Metalorganic Decomposition (MOD): A Nonvacuum, Spin-on, Liquid-Based Thin Film Method’,MRS Bulletin 10 (1989) 48.Google Scholar
  9. [9]
    J. H. Schofield,J. Electron Spectrosc. 8 (1976) 129.Google Scholar
  10. [10]
    M. P. Seah and W. A. Dench,Surf. & Interface Anal. 1 (1979) 2.Google Scholar
  11. [11]
    K. Yamanaka,Japanese J. Appl. Phys,20 (4) (1981) L307.Google Scholar
  12. [12]
    M. T. Pope, ‘Heteropoly and Isopoly Oxometalatates’; Springer Verlag, New York (1983).Google Scholar
  13. [13]
    T. Yoshimura,J. Appl. Phys. 57 (1985) 911.Google Scholar
  14. [14]
    O. Bohnke, C. Bohnke and G. Robert,Solid State Ionics 6 (1982) 121.Google Scholar
  15. [15]
    J. P. Randin,J. Electron. Mater. 7 (1978) 47.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • A. M. Mance
    • 1
  • M. A. Habib
    • 2
  • S. P. Maheswari
    • 2
  • S. J. Simko
    • 3
  1. 1.Electrical and Electronics Engineering DepartmentGeneral Motors Research LaboratoriesWarrenUSA
  2. 2.Physical Chemistry DepartmentGeneral Motors Research LaboratoriesWarrenUSA
  3. 3.Analytical Chemistry DepartmentGeneral Motors Research LaboratoriesWarrenUSA

Personalised recommendations