Transition Metal Chemistry

, Volume 12, Issue 4, pp 299–301 | Cite as

Complexes of platinum, rhodium, iridium and ruthenium with a thiosemicarbazone derived from thiophene-2-carboxaldehyde

  • K. Mukkanti
  • R. P. Singh
Full Papers


Complexes of thiophene-2-carboxaldehyde thiosemicarbazone with RuIII, RhIII, IrIII and PtIV have been prepared and characterized by elemental analyses, molar conductance, room temperature, magnetic moments, infrared and electronic spectral studies. Probable structures for the complexes are suggested. All are diamagnetic except the RuIII complexes and possess octahedral structures. The crystal field parameters of the complexes have also been calculated.


Physical Chemistry Platinum Inorganic Chemistry Catalysis Ruthenium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    N. N. Orlova, V. A. Aksenova, D. A. Selidovkin, N. S. Bagdanova and G. N. Pershin,Russ. Pharm. Toxicol., 348 (1968).Google Scholar
  2. (2).
    K. Butler,US Patent No. 3,382, 266 (1968).Google Scholar
  3. (3).
    D. J. Bauer, L. St. Vincent, C. H. Kempe and A. W. Downe,Lancet,20, 494 (1963).Google Scholar
  4. (4).
    H. G. Petering, H. H. Buskik and G. E. Underwood,Cancer Res.,64, 367 (1964).Google Scholar
  5. (5).
    C. W. Johnson, J. W. Jolyner and R. P. Perry,Antibiotics and Chemotherapy,2, 636 (1952).Google Scholar
  6. (6).
    B. G. Benns, B. A. Gingers and C. H. Bayley,Appl. Microbiol.,8, 353 (1961).Google Scholar
  7. (7).
    M. A. Ali, S. E. Livingstone,Coord. Chem. Rev.,13, 101 (1974) and refs. therein.Google Scholar
  8. (8).
    K. Mukkanti, K. B. Pandeya and R. P. Singh,Ind. J. Chem.,21A, 641 (1982).Google Scholar
  9. (9).
    S. P. Ghosh, P. Bhattacharjee, L. Dubey and L. K. Mishra,J. Ind. Chem. Soc.,54, 230 (1977).Google Scholar
  10. (10).
    C. G. Kralinger, J. K. Ridder and J. Reedijk,Transition Met. Chem.,5, 73 (1980).Google Scholar
  11. (11).
    S. P. Ghosh and A. K. Banerjee,Ind. J. Chem.,2, 312 (1984).Google Scholar
  12. (12).
    B. N. Figgis and J. Lewis in J. Lewis and R. G. Wilkins (Eds),Modern Coordination Chemistry, Interscience Publishers Inc., New York, 1960.Google Scholar
  13. (13).
    M. M. Jones,Elementary Coordination Chemistry, Prentice Hall, Englewood Cliffs, N. J., p. 254, 1964.Google Scholar
  14. (14).
    S. E. Livingstone, J. H. Mayfield, D. S. Moore,Aust. J. Chem.,28, 2531 (1975).Google Scholar
  15. (15).
    K. W. Fung and K. E. Johnson,Inorg. Chem.,10, 1347 (1971).Google Scholar
  16. (16).
    C. K. Jorgensen,J. Inorg. Nucl. Chem.,24, 1571 (1962).Google Scholar
  17. (17).
    S. K. Sengupta, S. K. Sahni and R. N. Kapoor,Ind. J. Chem.,19A, 810 (1980).Google Scholar
  18. 918).
    A. P. B. Lever,Inorganic Electronic Spectroscopy, Elsevier, New York, 1968.Google Scholar
  19. (19).
    C. J. Ballhausen, in A. E. Martel (Ed.)Coordination Chemistry, Vol. I, Van Nostrand Reinhold, New York, 1971.Google Scholar
  20. (20).
    S. N. Poddar and N. Saha,J. Ind. Chem. Soc.,52, 57 (1975).Google Scholar
  21. (21).
    D. M. Wiles, B. A. Gingras and T. Suprunchuk,Can. J. Chem.,45, 469 (1967).Google Scholar
  22. (22).
    D. M. Wiles and T. Suprunchuk,Can. J. Chem.,47, 1087 (1969).Google Scholar
  23. (23).
    K. Mukkanti, K. B. Pandeya and R. P. Singh,Synth. React. Inorg. Met-Org. Chem.,15, 613 (1985).Google Scholar
  24. (24).
    M. Mashina,Bull. Chem. Soc. Jpn.,37, 974 (1964).Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • K. Mukkanti
    • 1
  • R. P. Singh
    • 1
  1. 1.Department of chemistryUniversity of DelhiDelhiIndia

Personalised recommendations