Advertisement

Journal of Statistical Physics

, Volume 53, Issue 5–6, pp 1179–1206 | Cite as

Derivation of a hydrodynamic equation for Ginzburg-Landau models in an external field

  • József Fritz
  • Christian Maes
Articles

Abstract

The lattice approximation to a time-dependent Ginzburg-Landau equation is investigated in the presence of a small external field. The evolution law conserves the spin, but is not reversible. A nonlinear diffusion equation of divergence type is obtained in the hydrodynamic limit. The proof extends to certain stochastically perturbed Hamiltonian systems.

Key words

Ginzburg-Landau models hydrodynamic limit perturbation of parabolic equations interpolation and singular integrals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. De Masi, N. Ianiro, S. Pellegrinotii, and E. Presutti, inNon-Equilibrium Phenomena II, From Stochastics to Hydrodynamics, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984).Google Scholar
  2. 2.
    J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamical behavior, Preprint,Google Scholar
  3. 3.
    C. Boldrighini, R. L. Dobrushin, and Yu. M. Suhov, One-dimensional hard rod caricature of hydrodynamics,J. Stat. Phys. 31:577 1983).Google Scholar
  4. 4.
    R. L. Dobrushin, S. Pellegrinotti, Yu. M. Suhov, and L. Triolo,J. Stat. Phys. 43:571 (1986).Google Scholar
  5. 5.
    J. Fritz, On the hydrodynamic limit of a Ginzburg-Landau lattice model. The law of large numbers in arbitrary dimensions, preprint.Google Scholar
  6. 6.
    J. W. Cahn and J. E. Hilliard,J. Chem. Phys. 28:258 (1958).Google Scholar
  7. 7.
    B. I. Halperin and P. C. Hohenberg,Rev. Mod. Phys. 49:435 (1977).Google Scholar
  8. 8.
    A. De Masi, E. Presutti, and E. Scacciatelli, The weakly asymmetric simple exclusion process, Preprint.Google Scholar
  9. 9.
    J. Gärtner, Convergence towards Burger's equation and propagation of chaos for weakly asymmetric exclusion processes, Preprint.Google Scholar
  10. 10.
    J. Krug, J. L. Lebowitz, H. Spohn, and M. Q. Zhang,J. Stat. Phys. 44:535 (1986).Google Scholar
  11. 11.
    H. van Beijeren, R. Kutner, and H. Spohn, Excess noise for driven diffusive systems.Phys. Rev. Lett. 54:2026 (1985).Google Scholar
  12. 12.
    J. Fritz, inIMA Volumes in Mathematics (1986), Vol. 9, p. 75.Google Scholar
  13. 13.
    A. De Masi, P. A. Ferrari, and J. L. Lebowitz,J. Stat. Phys. 44:589 (1986).Google Scholar
  14. 14.
    D. Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, New York, 1979).Google Scholar
  15. 15.
    E. M. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, 1971).Google Scholar
  16. 16.
    K. Yoshida,Functional Analysis (Springer-Verlag, 1980).Google Scholar
  17. 17.
    H.-R.Commun. Math. Phys. 84:207 (1982).Google Scholar
  18. 18.
    J. Fritz,J. Stat. Phys. 47:551 (1987).Google Scholar
  19. 19.
    T. Funaki, Derivation of the hydrodynamical equation for a 1-dimensional Ginzburg-Landau model, Preprint.Google Scholar
  20. 20.
    M. Z. Guo, G. Papanicolau, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Preprint.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • József Fritz
    • 1
  • Christian Maes
    • 1
    • 2
  1. 1.Department of Mathematics and PhysicsRutgers UniversityNew Brunswick
  2. 2.Instituut voor Theoretische FysikaAspirant NFWOK.U. LeuvenBelgium

Personalised recommendations