Journal of Statistical Physics

, Volume 53, Issue 5–6, pp 1103–1137 | Cite as

Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

  • Chang-Bae Kim
  • John A. Krommes
Articles

Abstract

The work of J. A. Krommes and R. A. Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar is extended in two directions: (1) For their “reference model,” improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of afinite spatial autocorrelation lengthLc. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for smallLc to the quasilinear limit and for largeLc to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values ofLc.

Key words

Passive advection bounds optimum theory stochastic magnetic fields transport variational principles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Kraichman,J. Math. Phys. 2:124 (1961).Google Scholar
  2. 2.
    J. A. Krommes, inBasic Plasma Physics II, A. A. Galeev and R. N. Sudan, eds. (North-Holland, Amsterdam, 1984), Chapter 5.5, p. 183.Google Scholar
  3. 3.
    F. H. Busse,Adv. Appl. Mech. 18:77 (1978).Google Scholar
  4. 4.
    J. A. Krommes and R. A. Smith,Ann. Phys. 177:246 (1987).Google Scholar
  5. 5.
    W. V. R. Malkus,Proc. R. Soc. A 225:196 (1954).Google Scholar
  6. 6.
    L. N. Howard,J. Fluid Mech. 17:405 (1963).Google Scholar
  7. 7.
    R. A. Smith, Ph. D. thesis, Princeton University (1986).Google Scholar
  8. 8.
    R. Kubo,J. Math. Phys. 4:174 (1963).Google Scholar
  9. 9.
    T. H. Stix,Phys. Rev. Lett. 30:833 (1973).Google Scholar
  10. 10.
    A. B. Rechester and M. N. Rosenbluth,Phys. Rev. Lett. 40:38 (1978).Google Scholar
  11. 11.
    J. A. Krommes, C. Oberman, and R. H. Kleva,J. Plasma Phys. 30:11 (1983).Google Scholar
  12. 12.
    P. W. Terry, P. H. Diamond, and T. S. Hahm,Phys. Rev. Lett. 57:1899 (1986).Google Scholar
  13. 13.
    J. A. Krommes and C.-B. Kim,Phys. Fluids 31:869 (1988).Google Scholar
  14. 14.
    A. A. Thoul, P. L. Similon, and R. N. Sudan,Phys. Rev. Lett. 59:1448 (1987).Google Scholar
  15. 15.
    J. R. Jokipii and E. N. Parker,Astrophys. J. 155:777 (1969).Google Scholar
  16. 16.
    B. B. Kadomtsev and O. P. Pogutse, inPlasma Physics and Controlled Nuclear Fusion Research 1978 (IAEA, Vienna, 1979), p. 649.Google Scholar
  17. 17.
    R. H. Kraichman,U.S.-Japan Workshop on Plasma and Fluid Turbulence, Austin, Texas, (December 1987); private communication (1987).Google Scholar
  18. 18.
    J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,Phys. Rev. A 26:1589 (1982); R. F. Fox, R. Roy, and A. W. Yu,J. Stat. Phys. 47:477 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Chang-Bae Kim
    • 1
  • John A. Krommes
    • 1
  1. 1.Plasma Physics LaboratoryPrinceton UniversityPrinceton

Personalised recommendations