Skip to main content
Log in

A validated mathematical model for a zinc electrowinning cell

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A set of (95) equations forming a dynamic, nonlinear model of an industrial pilot-plant scale zinc electrowinning cell fed with high purity electrolyte is presented. Only the solution of the steady-state model is considered in this paper. Values for unknown model parameters have either been obtained from the literature or else estimated using experimental data taken from the pilot-plant cell. Sensitivity studies showed that uncertainties in the temperature dependency of the zinc and hydrogen reaction exchange current densities and the exchange coefficient for the hydrogen reaction have a major effect on the model predictions. Excellent agreement between predicted and experimental results was obtained, provided that cathodic mass transfer effects were included in the model. Both parameter estimation and solution of the steady-state model were carried out using the SPEEDUP flowsheeting package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Scott, R. M. Pitblado, G. W. Barton and A. R. Ault,J. Appl. Electrochem. 18 (1988) 120–7.

    Google Scholar 

  2. F. Laplicque and A. Storck,ibid.15 (1985) 925–35.

    Google Scholar 

  3. W. W. Harvey,Hydrometallurgy 2 (1976) 35–50.

    Google Scholar 

  4. T. W. Chapman, ‘Hydrometallurgical Process Fundamentals’, Plenum Press, New York (1984) pp. 599–616.

    Google Scholar 

  5. A. W. Bryson, ‘Modelling the Performance of Electro-winning Cells’, Hydrometallurgy 81, Society of Chemical Industry Symposium, UMIST, Manchester (1981).

  6. A. C. Scott, The Development and Application of a Mathematical Model for the Zinc Electrowinning Process’, Ph.D. Thesis, University of Sydney, Australia (1988).

    Google Scholar 

  7. J. M. Coulson and J. F. Richardson, ‘Chemical Engineering’, Vol. 1. 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  8. R. H. Perry and C. H. Chilton, ‘Chemical Engineers Hand-book’, 5th ed., McGraw Hill, New York (1973).

    Google Scholar 

  9. A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods’, J. Wiley & Sons, New York (1980).

    Google Scholar 

  10. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier Scientific, Amsterdam (1979).

    Google Scholar 

  11. H. V. Tartar, W. W. Newschwander and A. T. Ness,J. Am. Chem. Soc. 63 (1941) 28–36.

    Google Scholar 

  12. T. Hurlen and T. R. Breivik,Acta Chem Scand. A32 (1978) 447–53.

    Google Scholar 

  13. A. G. Turnbull and M. W. Wadsley, Extractive Metallurgy Symposium, Australian Institute of Mining Metallurgy, Melbourne (1984) p. 79.

  14. M. Whitfield,Geochimica et Cosmochimica Acta 39 (1975) 1545–57.

    Google Scholar 

  15. K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96 (1974) 5701–7.

    Google Scholar 

  16. D. Pletcher, ‘Industrial Electrochemistry’, Chapman & Hall, London (1982).

    Google Scholar 

  17. T. Hurlen,Electrochim. Acta 7 (1962) 653–68.

    Google Scholar 

  18. L. J. Janssen,ibid.23 (1978) 81–6.

    Google Scholar 

  19. D. N. Bennion, ‘Modeling and Reactor Simulation’, AlChE Symposium Series No. 229,79 (1983) pp. 25–36.

    Google Scholar 

  20. H. Majima, E. Peters, Y. Awakura and S. K. Park,Met. Trans. B. 18B (1987) 41–7.

    Google Scholar 

  21. A. L. Rotenyan, N. P. Fedotov and L. U. Sok,Zh. Fiz. Khim. 31 (1957) 1295.

    Google Scholar 

  22. S. Trasatti,J. Electroanal. Chem. 39 (1972) 163–84.

    Google Scholar 

  23. D. A. Payne and A. J. Bard,J. Electrochem. Soc. 119 (1972) 1665–74.

    Google Scholar 

  24. H. Matsuda and Y. Ayabe,Elektrochem. 63 (1959) 1164.

    Google Scholar 

  25. A. G. Stromberg and L. N. Popova,Elektrokhimiya 4 (1968) 1147.

    Google Scholar 

  26. C. C. Pantelides,Comp. Chem. Eng. 12 (1988) 745–755.

    Google Scholar 

  27. R. Parsons, Personal communication (1986).

  28. A. J. Bard, Personal communication (1986).

  29. L. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013–23.

    Google Scholar 

  30. H. Vogt,ibid.23 (1978) 203–5.

    Google Scholar 

  31. F. Ajersch, D. Mathieu and D. L. Piron,Can. Met. Quarterly 24 (1985) 53–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, G.W., Scott, A.C. A validated mathematical model for a zinc electrowinning cell. J Appl Electrochem 22, 104–115 (1992). https://doi.org/10.1007/BF01023811

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023811

Keywords

Navigation