Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 6, pp 1254–1266 | Cite as

Mechanisms of electroless metal plating. III. Mixed potential theory and the interdependence of partial reactions

  • Perminder Bindra
  • Judith Roldan
Papers

Abstract

Electroless plating reactions are classified according to four overall reaction schemes in which each partial reaction is either under diffusion control or electrochemical control. The theory of a technique based on the observation of the mixed potential as a function of agitation, concentration of the reducing agent and concentration of metal ions is presented. Using this technique it is shown that in electroless copper plating the copper deposition reaction is diffusion-controlled while the formaldehyde decomposition reaction is activation-controlled. Values of the kinetic and mechanistic parameters for the partial reactions obtained by this method and by other electrochemical methods indicate that the two partial reactions are not independent of each other.

Keywords

Copper Decomposition Reaction Electrochemical Method Reaction Scheme Potential Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

Tafel slope intercept

A

electrode area

bM

Tafel slope for cathodic partial reaction

bR

Tafel slope for anodic partial reaction

B′M

diffusion parameter for CuEDTA2− complex

\(B_{O_2 }^\prime \)

diffusion parameter for dissolved oxygen

B′R

diffusion parameter for HCHO

CM

bulk concentration of copper ions

\(C_{O_2 }^\infty \)

bulk concentration of dissolved oxygen

CRa

surface concentration of HCHO

CR

bulk concentration of HCHO

DR

diffusion coefficient of HCHO

E

electrode potential

EM

thermodynamic reversible potential for the metal deposition reaction

EM0

standard electrode potential for copper deposition

EMP

mixed potential

ER

thermodynamic reversible potential for reducing agent reaction

ER0

standard electrode potential for HCHO

F

Faraday constant

iM

current density for metal deposition

i′M

total cathodic current density

iMk

kinetic controlled current density for metal deposition

iM0

exchange current density for metal deposition

iMD

diffusion-limited current density for metal deposition

iMD′

diffusion-limited current density for total cathodic reactions

\(i_{O_2 } \)

current density for oxygen reduction

iplat

plating current density

iR

current density for HCHO oxidation

iR0

exchange current density for HCHO oxidation

iRD

diffusion-limited current density for HCHO oxidation

nM

number of electrons transferred in metal deposition reaction

nR

number of electrons transferred in the HCHO oxidation reaction

R

gas constant

T

absolute temperature

ν

stoichiometric number

αM

transfer coefficient for metal deposition

αR

transfer coefficient for HCHO oxidation

βM

symmetry factor

γ

number of steps prior to rate determining step

ηM

overpotential for metal deposition

ηR

overpotential for HCHO oxidation

v

kinematic viscosity

ω

rotation rate of electrode

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Wagner and W. Traud,Z. Electrochem. 44 (1938) 391.Google Scholar
  2. [2]
    J. V. Petrocelli,J. Electrochem. Soc. 112 (1965) 124.Google Scholar
  3. [3]
    E. J. Kelly,112 (1965) 124.Google Scholar
  4. [4]
    M. Paunovic,Plating 51 (1968) 1161.Google Scholar
  5. [5]
    S. M. El-Raghy and A. A. Aho-Solama,J. Electrochem. Soc. 126 (1979) 171.Google Scholar
  6. [6]
    F. M. Donahue and F. L. Shippey,Plating 60 (1973) 135.Google Scholar
  7. [7]
    F. M. Donahue and C. U. Yu,Electrochim. Acta 15 (1970) 237.Google Scholar
  8. [8]
    A. Molenaar, M. F. E. Holdrinet and L. K. H. van Beek,Plating 61 (1974) 238.Google Scholar
  9. [9]
    F. M. Donahue,J. Electrochem. Soc. 119 (1972) 72.Google Scholar
  10. [10]
    T. N. Andersen, M. H. Ghandehari and M. Ejuning,122 (1975) 1580.Google Scholar
  11. [11]
    P. Bindra and J. Tweedie,130 (1983) 1112.Google Scholar
  12. [12]
    F. M. Donahue,127 (1980) 51.Google Scholar
  13. [13]
    V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962).Google Scholar
  14. [14]
    A. C. Riddiford, ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 4, Interscience, New York (1966).Google Scholar
  15. [15]
    A. C. Makrides,J. Electrochem. Soc. 107 (1960) 869.Google Scholar
  16. [16]
    D. S. Gnanamuthu and J. V. Petrocelli,114 (1967) 1036.Google Scholar
  17. [17]
    D. Barnes and P. Zuman,J. Electroanal. Chem. 46 (1973) 323.Google Scholar
  18. [18]
    D. Manousek and J. Volke,43 (1973) 365.Google Scholar
  19. [19]
    W. Vielstich, ‘Fuel Cells’, (translated by D. J. G. Ives), Wiley-Interscience, London (1970).Google Scholar
  20. [20]
    R. M. Lukes,Plating 51 (1964) 1066.Google Scholar
  21. [21]
    K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press (1967).Google Scholar
  22. [22]
    J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Vol. 2, MacDonald and Co. Ltd., London (1970).Google Scholar
  23. [23]
    U. Bertocci and D. R. Turner, ‘Encyclopedia of Electrochemistry of the Elements’, Vol. 2, Marcel Dekker, New York (1974).Google Scholar
  24. [24]
    P. B. Bindra and J. Roldan,J. Electrochem. Soc. 132 (1985) 2581.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Perminder Bindra
    • 1
  • Judith Roldan
    • 2
  1. 1.IBM CorporationEndicottUSA
  2. 2.Thomas J. Watson Research CenterIBM CorporationYorktown HeightsUSA

Personalised recommendations