Journal of Applied Electrochemistry

, Volume 17, Issue 6, pp 1228–1233 | Cite as

Anodic oxidation of o-toluenesulphonamide to saccharine on a NiO(OH)-coated nickel anode

  • Jaromír Hlavatý
  • Viktor Bakos
  • Jiří Volke


o-Toluenesulphonamide has been electrolytically oxidized at low current density to saccharine in aqueous solutions of alkali carbonates on anodes coated with NiO(OH). This electrolytic oxidation led to a 40% yield of saccharine. The application of carbon and glassy-carbon counter electrodes or of various supports for the working electrodes did not result in improved saccharine yield. Moreover, the choice of a different potential and a different current density or the use of organic co-solvents did not substantially affect the course of the electrolytic oxidation.

In the electrolytic oxidation ofo-toluenesulphonamide a parasitic evolution of oxygen occurred which caused a partial degradation of the starting material. In strongly alkaline media, i.e. in aqueous solutions of alkali hydroxides, a fission of the NH2 group with formation ofo-toluenesulphonate occurred during the electrolysis.


Oxidation Oxygen Physical Chemistry Nickel Aqueous Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Grayson and Kirk-Othmer, ‘Encyclopedia of Chemical Technology’ Wiley and Sons, New York (1984) Vol. 14, p. 833; Vol. 6, p. 92.Google Scholar
  2. [2]
    W. Gerhartz, ‘Ullmanns Enzyklopädie der Technischen Chemie’, Verlag Chemie Weinheim (1982) pp. 22, 356.Google Scholar
  3. [3]
    H. Löwe, Schwz. Pat. P 94223 (1921).Google Scholar
  4. [4]
    K. Durkes, Ger. Pat. 920 186 (1954);Chem. Abstr. 52 (1958) 19624.Google Scholar
  5. [5]
    F. Fichter and H. Löwe,Helv. Chim. Acta 5 (1922) 60.Google Scholar
  6. [6]
    N. V. Industrieelle Maatashappij, Holl. Pat. P 41 338 (1935);Chem. Abstr. 31 (1937) 8399.Google Scholar
  7. [7]
    P. Seiler and P. M. Robertson,Chimia 36 (1982) 7–8, 305 and references cited therein.Google Scholar
  8. [8]
    P. M. Robertson, Pat. D 2503819 Int. Cl3 C 25B 11/00 (1975).Google Scholar
  9. [9]
    J. Klauen and H. J. Schäfer,Tetrahedron 38 (1982) 3299.Google Scholar
  10. [10]
    J. Chaloupka,Chem. Listy 79 (1985) 762.Google Scholar
  11. [11]
    V. Stará,79 (1985) 992.Google Scholar
  12. [12]
    F. Fichter, ‘Organische Elektrochemie’, Steinkopff, Dresden (1942) pp. 12–13, 75–85.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Jaromír Hlavatý
    • 1
  • Viktor Bakos
    • 1
  • Jiří Volke
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistry and ElectrochemistryCzechoslovak Academy of SciencesPrague 1Czechoslovakia

Personalised recommendations