Journal of Applied Electrochemistry

, Volume 17, Issue 6, pp 1223–1227 | Cite as

Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes

  • M. N. Mahmood
  • D. Masheder
  • C. J. Harty


The use of polytetrafluoroethylene-bonded, carbon gas-diffusion electrodes, prepared with carbon impregnated with metal phthalocyanines, for the electrochemical reduction of carbon dioxide in aqueous, acidic solution has been investigated. High rates of reduction of carbon dioxide to carbon monoxide were demonstrated at electrodes impregnated with cobalt (II) phthalocyanine. In contrast, formic acid, and not carbon monoxide, was produced at low rates at electrodes impregnated with either manganese, copper or zinc phthalocyanine. This marked variation in reaction product on changing the central metal ion of the organometallic complex is rationalized in terms of a reaction mechanism involving, as the first step, the electrochemical reduction of cobalt (II) to cobalt (I).


Copper Zinc Carbon Dioxide Cobalt Manganese 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Kapusta and N. Hackerman,J. Electrochem. Soc. 130 (1983 607.Google Scholar
  2. [2]
    F. Goodridge and G. Presland,J. Appl. Electrochem. 14 (1984) 791.Google Scholar
  3. [3]
    E. Lamy, L. Nadjo and J-M. Savéant,J. Electroanal. Chem. Interfacial Electrochem. 78 (1977) 403.Google Scholar
  4. [4]
    J. Fischer, Th. Lehmann and E. Heitz,J. Appl. Electrochem. 11 (1981) 743.Google Scholar
  5. [5]
    L. V. Haynes and D. T. Sawyer,Anal. Chem. 39, (1967) 332.Google Scholar
  6. [6]
    K. Ito, S. Ikeda, T. Iida and A. Nomura,Denki Kagaku yobi Kogyo Butsuri Kagaku 50 (1982) 463.Google Scholar
  7. [7]
    U. Kaiser and E. Heitz,Ber. Bunsenges. Phys. Chem. 77 (1973) 818.Google Scholar
  8. [8]
    C. Amatore and J-M. Savéant,J. Amer. Chem. Soc. 103 (1981) 5021.Google Scholar
  9. [9]
    K. Takahashi, K. Hiratsuka, H. Sasaki and S. Toshima,Chem. Lett. (1979) 305.Google Scholar
  10. [10]
    B. Fisher and R. Eisenberg,J. Amer. Chem. Soc. 102 (1980) 7363.Google Scholar
  11. [11]
    S. Meshitsuka, M. Ichikawa and K. Tamaru,J. Chem. Soc., Chem. Commun. (1974) 158.Google Scholar
  12. [12]
    C. M. Lieber and N. S. Lewis,J. Amer. Chem. Soc. 106 (1984) 5033.Google Scholar
  13. [13]
    S. Kapusta and N. Hackerman,J. Electrochem. Soc. 131 (1984) 1511.Google Scholar
  14. [14]
    M. N. Mahmood, D. Masheder and C. J. Harty,J. Appl. Electrochem. 17 (1987) 1159.Google Scholar
  15. [15]
    J. F. Murray, H. W. Nolen, G. R. Gordon and J. H. Peters,Anal. Biochem. 121 (1982) 301.Google Scholar
  16. [16]
    L. D. Rollmann and R. T. Iwamoto,J. Amer. Chem. Soc. 90 (1968) 1455.Google Scholar
  17. [17]
    A. B. P. Lever and J. P. Wilshire,Can. J. Chem. 54 (1976) 2514.Google Scholar
  18. [18]
    A. B. P. Lever and P. C. Minor,Inorg. Chem. 20 (1981) 4015.Google Scholar
  19. [19]
    D. Masheder and K. P. J. Williams,J. Raman Spectrosc., in press.Google Scholar
  20. [20]
    H. Eckert and Y. Kiesel,Angew. Chem., Int. Ed. Engl. 20 (1981) 473.Google Scholar
  21. [21]
    H. Eckert, I. Lagerlund and I. Ugi,Tetrahedron 33 (1977) 2243.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • M. N. Mahmood
    • 1
  • D. Masheder
    • 1
  • C. J. Harty
    • 1
  1. 1.BP Research CentreSunbury-on-ThamesUK

Personalised recommendations