Transition Metal Chemistry

, Volume 12, Issue 3, pp 241–245 | Cite as

Kinetics of substitution of aqua ligands fromcis-diaqua-bis(ethylene-diamine) cobalt(III) ion by quinolinic acid in water-ethanol mixtures

  • Kalpana Banerjee
  • Binoy Niyogy
  • Gauri De Sankar
Full Papers


The kinetics of aqua ligand substitution fromcis-[Coen2(H2O)2]3+ by quinolinic acid have been studied spectrophotometrically in the 40 to 55°C range. At pH 4.05 the quinolinic acid H2Quin behaves as uninegative and bidentate (O, O) donor. The replacement of water was found to involve two consecutive step processes. The first is the replacement of one water fromcis-[Coen2(H2O)2]3+ by unidentate HQuin, involving prior establishment of an ion-pairing associative equilibrium, followed by dissociative interchange. The second step is the slower chelation step, where another water molecule is replaced. The rate constants for both the steps and the ion-pair equilibrium constant for the first step have been evaluated. The activation parameters for the two steps are: ΔH 1 =117.2 kJ mol−1, ΔH 2 =100.5 kJ mol−1 and ΔS 1 =69.4 JK−1 mol−1, ΔS 2 =12.1 JK−1 mol−1. A probable mechanism for the substitution process is suggested.


Cobalt Equilibrium Constant Aqua Activation Parameter Probable Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. N. Bishnu, B. Chakravarti, R. N. Banerjee and D. Banerjea,J. Coord. Chem.,13, 63 (1983).Google Scholar
  2. (2).
    C. H. Langford and W. R. Muir,J. Am. Chem. Soc.,89, 3141 (1967);Google Scholar
  3. (2a).
    P. M. Brown and G. M. Harris,Inorg. Chem.,7 1872 (1968).Google Scholar
  4. (3).
    D. R. Stranks and J. K. Yandell,Inorg. Chem.,9, 751 (1970).Google Scholar
  5. (4).
    D. Banerjea and J. Roy,Z. Anorg. Allgm., Chem.,400, 89 (1983).Google Scholar
  6. (5).
    A. Ghosal and S. K. Siddhanta,Indian J. Chem.,20A, 40 (1981).Google Scholar
  7. (6).
    K. Dutta and G. S. De,Indian J. Chem.,21A 477 (1982).Google Scholar
  8. (7).
    D. Chatterjee, K. Banerjee and G. S. De,Indian J. Chem.,26A, 350 (1986).Google Scholar
  9. (8).
    D. Chatterjee and G. S. De,Transition Met. Chem. (in press).Google Scholar
  10. (9).
    L. S. Bark, M. B. Davies and M. C. Powell,Inorg. Chim. Acta,50 195 (1981).Google Scholar
  11. (10).
    F. P. Dwyer, A. M. Sargeson and L. K. Reid,J. Am. Chem. Soc.,85, 1219 (1963).Google Scholar
  12. (11).
    Stability Constants of Metal Ion Complexes,Spec. pub. No. 17, Chem. Soc. (1964).Google Scholar
  13. (12).
    J. Bjerrum and S. E. RasmussenActa Chem. Scand.,6, 1265 (1952).Google Scholar
  14. (13).
    J. A. Weyh and R. E. Hamm,Inorg. Chem.,8, 2298 (1969).Google Scholar
  15. (14).
    W. Kruse and H. Taube,J. Am. Chem. Soc.,83, 1280 (1961).Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Kalpana Banerjee
    • 1
  • Binoy Niyogy
    • 1
  • Gauri De Sankar
    • 1
  1. 1.Department of ChemistryUniversity of BurdwanBurdwanIndia

Personalised recommendations