Advertisement

Journal of Statistical Physics

, Volume 54, Issue 1–2, pp 163–170 | Cite as

On the upper critical dimensions of random spin systems

  • Hal Tasaki
Article

Abstract

A set of critical exponent inequalities is proved for a large class of classical random spin systems. The inequalities imply rigorous (and probably the optimal) lower bounds for the upper critical dimensions, i.e.,du≥4 for regular and random ferromagnets,du≥6 for spin glasses and random field systems.

Key words

Random spin systems critical exponent inequalities upper critical dimensions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tasaki,Commun. Math. Phys. 113:49 (1987).Google Scholar
  2. 2.
    D. S. Fisher,Phys. Rev. Lett. 54:1063 (1985).Google Scholar
  3. 3.
    H. Nishimori,Prog. Theor. Phys. 66:1169 (1981); M. Schwartz and A. Soffer, Phys. Rev. Lett.55:2499 (1985); J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,Phys. Rev. Lett. 57:2999 (1987).Google Scholar
  4. 4.
    M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1972).Google Scholar
  5. 5.
    K. G. Wilson and J. Kogut,Phys. Rep. 12C:75 (1974).Google Scholar
  6. 6.
    M. E. Fisher,Phys. Rev. 180:594 (1969).Google Scholar
  7. 7.
    L. L. Liu, R. I. Joseph, and H. E. Stanley,Phys. Rev. B 6:1963 (1972).Google Scholar
  8. 8.
    J. T. Chayes, L. Chayes, and J. Fröhlich,Commun. Math. Phys. 100:399 (1985); M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman,J. Phys. A 20:L313 (1987).Google Scholar
  9. 9.
    A. B. Harris,J. Phys. C 7:1671 (1974).Google Scholar
  10. 10.
    K. Binder and A. P. Young,Rev. Mod. Phys. 58:801 (1986); D. S. Fisher and D. A. Huse, Equilibrium behavior of the spin-glass ordered phase, preprint.Google Scholar
  11. 11.
    S. F. Edwards and P. W. Anderson,J. Phys. F 5:965 (1975); D. Sherington and S. Kirkpatrick,Phys. Rev. Lett. 35:1792 (1975); G. Parisi,Phys. Rev. Lett. 43:1754 (1979); J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless,Commun. Math. Phys. 106:41 (1986).Google Scholar
  12. 12.
    Y. Imry and S. K. Ma,Phys. Rev. Lett. 35:1399 (1975); D. S. Fisher, J. Fröhlich, and T. Spencer,J. Stat. Phys. 34:863 (1984); J. Imbrie,Commun. Math. Phys. 98:145 (1985); J. Bricmont and A. Kupiainen,Phys. Rev. Lett. 59:1829 (1987);Commun. Math. Phys., to appear.Google Scholar
  13. 13.
    G. Grinstein,Phys. Rev. Lett. 37:944 (1976); A. Aharony, Y. Imry, and S. K. Ma,Phys. Rev. Lett. 37:1364 (1976); G. Parisi and N. Sourlas,Phys. Rev. Lett. 43:744 (1979); M. Schwartz and A. Soffer,Phys. Rev. B 33:2059 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Hal Tasaki
    • 1
  1. 1.Physics DepartmentPrinceton UniversityPrinceton

Personalised recommendations