Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 2, pp 419–426 | Cite as

The voidage problem in gas-electrolyte dispersions

Papers

Abstract

Assessing the ohmic interelectrode resistance of electrochemical reactors with gas evolution requires data for the gas void fraction of gas-electrolyte dispersions. A voidage equation is derived taking account of the internal liquid flow in stationary electrolytes and at small liquid superficial velocities. The equation is a general form of available voidage equations.

Keywords

Physical Chemistry Liquid Flow Electrochemical Reactor Void Fraction Superficial Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

C

non-dimensional constant, Equation 8

n

exponent, Equation 5

S

cross-sectional area (m2)

vG

gas velocity (m s−1)

vL

liquid velocity (m s−1)

vs

rising velocity of a bubble swarm (m s−1)

vl

terminal rising velocity of a single bubble (m s−1)

VG

volume flow rate of gas (m3 s−1)

VL

volume flow rate of liquid (m3 s−1)

α

fraction of cross-sectional area

ε

volume (void) fraction of gas

εm

geometric maximum of void fraction

ε

maximum of void fraction in infinite gas flow

Indices

i

internal

t

total

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Vogt,Fortschr. Verfahrenstech. — Progr. Chem. Engng 20 (1982) 369 (Engl.)Google Scholar
  2. [2]
    G. Kreysa and M. Kuhn,J. Appl. Electrochem. 15 (1985) 517.Google Scholar
  3. [3]
    F. Hine and T. Sugimoto,Soda-to-Enso 31 (1980) 347.Google Scholar
  4. [4]
    J. F. Richardson and W. N. Zaki,Trans. Inst. Chem. Engrs 39 (1961) 348.Google Scholar
  5. [5]
    N. Zuber,Chem. Engng Sci. 19 (1964) 897.Google Scholar
  6. [6]
    H. Behringer,Z. ges. Kälte-Ind. 43 (1936) 55.Google Scholar
  7. [7]
    D. J. Nicklin,Chem. Engng Sci. 17 (1962) 693.Google Scholar
  8. [8]
    I. Roušar,J. Electrochem. Soc. 116 (1969) 676.Google Scholar
  9. [9]
    I. Roušar, V. Cezner, J. Nejepsová, M. M. Jakšié, M. Spasojevié and B. Z. Nikolié,J. Appl. Electrochem. 7 (1977) 427.Google Scholar
  10. [10]
    H. Vogt,Electrochim. Acta 26 (1981) 1311,27 (1982) 1157.Google Scholar
  11. [11]
    I. Roušar,J. Appl. Electrochem. 17 (1987) 134.Google Scholar
  12. [12]
    C. W. Tobias,J. Electrochem. Soc.,106 (1959) 833.Google Scholar
  13. [13]
    W. Siemes,Chem.-Ing.-Tech. 26 (1954) 614.Google Scholar
  14. [14]
    F. Yoshida and K. Akita,AIChE J. 11 (1965) 9.Google Scholar
  15. [15]
    D. P. Haughey and G. S. G. Beveridge,Chem. Eng. Sci. 21 (1966) 905.Google Scholar
  16. [16]
    F. Hine and K. Murakami,J. Electrochem. Soc. 127 (1980) 292.Google Scholar
  17. [17]
    W. Gestrich and W. Rähse,Chem.-Ing.-Tech. 47 (1975) 8.Google Scholar
  18. [18]
    F. Mayinger, ‘Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen’, Springer, Wien (1982) p. 37.Google Scholar
  19. [19]
    G. Marrucci,Ind. Engng Chem. Fund. 4 (1965) 224.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • H. Vogt
    • 1
  1. 1.Fachbereich Verfahrens- und UmwelttechnikTechnische Fachhochschule BerlinBerlin 65Germany

Personalised recommendations