Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 2, pp 385–397 | Cite as

Electrochemical study of mass transfer in Li-Mg and Li-Mg-Al alloys

  • Y. Iwadate
  • M. Lassouani
  • F. Lantelme
  • M. Chemla
Papers

Abstract

The interdiffusion coefficients in Li-Mg alloys and Li-Mg-Al alloys were evaluated using transient techniques such as chronopotentiometry and chronoamperometry. Anodic or cathodic pulses were imposed on the alloy electrodes under galvanostatic and potentiostatic conditions.

Taking into account charging of the double layer, ohmic drop, adsorption of diffusing species and electrolyte-electrode boundary shift, the diffusion coefficients of lithium in Li-Mg alloys (α-phase and β-phase) and in Li-Mg-Al alloys were estimated at around 420°C. In the case of Li-Mg α-phase alloys, the values of the diffusion coefficients,DLi, can be represented in a polynomial expansion of the composition of the alloy,XLi (mol%) as follows:
$$ln D_{Li} = - 19.850 - 0.4294X_{Li} + 0.0249X_{Li}^2$$

The diffusion coefficients of lithium in Li-Mg (β-phase) alloys show extremely large values (≃10−6 cm2s−1) as also in the Li-Al β-phase alloys.

Keywords

Physical Chemistry Lithium Mass Transfer Diffusion Coefficient Double Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. P. Yao, L. A. Heredy and R. C. Saunders,J. Electrochem. Soc. 118 (1971) 1039.Google Scholar
  2. [2]
    A. K. Fisher and D. R. Vissers,130 (1983) 5.Google Scholar
  3. [3]
    F. J. Martino, E. C. Gay and W. E. Moore,129 (1982) 2701.Google Scholar
  4. [4]
    E. C. Gay, D. R. Vissers, F. J. Martino and K. E. Andersori,123 (1976) 1591.Google Scholar
  5. [5]
    S. D. James,Electrochim. Acta 21 (1976) 157.Google Scholar
  6. [6]
    A. L. L'vov, A. A. Gnilomedov, A. P. Selemenev and E. N. Protasov,Sov. Electrochem. 11 (1975) 1232.Google Scholar
  7. [7]
    M. M. Nicholson,J. Electrochem. Soc. 121 (1974) 734.Google Scholar
  8. [8]
    R. A. Sharma and R. Seefurth,123 (1976) 1763.Google Scholar
  9. [9]
    S. D. James and L. E. De Vries,123 (1976) 321.Google Scholar
  10. [10]
    E. N. Protasov, A. A. Gnilomedov, A. L. L'vov, A. A. Suchkov and A. S. Ivanos,Sov. Electrochem. 17 (1980) 750.Google Scholar
  11. [11]
    M. R. St. John, A. J. Furgala and A. F. Sammells,j. Electrochem. Soc. 129 (1982) 246.Google Scholar
  12. [12]
    E. N. Protasov, A. A. Gnilomedov and A. L. L'vov,Sov. Electrochem. 14 (1978) 1127.Google Scholar
  13. [13]
    V. S. Tiunov, A. G. Morachevskii and A. I. Demidov,J. Appl. Chem. USSR 52 (1979) 2454.Google Scholar
  14. [14]
    E. N. Protasov, A. A. Gnilomedov, A. L. L'vov and A. S. Ivanov,Sov. Electrochem. 15 (1979) 1061.Google Scholar
  15. [15]
    M. L. Saboungi and M. Blander,J. Electrochem. Soc. 122 (1975) 1631.Google Scholar
  16. [16]
    M. Sahoo and J. T. N. Atkinson,J. Mater. Sci.,17 (1982) 3564.Google Scholar
  17. [17]
    F. Lantelme, J. P. Hanselin and M. Chemla,Electrochim. Acta 22 (1977) 1113.Google Scholar
  18. [18]
    H. A. Laitinen, W. S. Ferguson and R. H. Osteryoung,J. Electrochem. Soc.,104 (1957) 516.Google Scholar
  19. [19]
    F. Lantelme, Y. Iwadate, Y. Shi and M. Chemla,J. Electroanal. Chem. 187 (1985) 229.Google Scholar
  20. [20]
    D. D. MacDonald, ‘Transient Techniques in Electrochemistry,’ Plenum Press, New York (1977).Google Scholar
  21. [21]
    F. Lantelme,J. Electroanal. Chem. 196 (1985) 227.Google Scholar
  22. [22]
    T. Berzins and P. Delahay,J. Amer. Chem. Soc. 75 (1953) 4205.Google Scholar
  23. [23]
    F. Lantelme and M. Chemla,Z. Naturforsch. 38a (1983) 106.Google Scholar
  24. [24]
    K. B. Oldham and D. O. Raleigh,J. Electrochem. Soc. 118 (1971) 252.Google Scholar
  25. [25]
    L. B. Godulyan and V. M. Zatsepin,Sov. Electrochem. 16 (1980) 1427.Google Scholar
  26. [26]
    F. Lantelme and S. Belaidouni,Electrochim. Acta 26 (1981) 1225.Google Scholar
  27. [27]
    C. Wagner, ‘Thermodynamics of Alloys,’ Addison-Wesley Inc., Reading, Mass. (1952) p. 47.Google Scholar
  28. [28]
    W. H. Reinmuth,Anal. Chem. 33 (1961) 485.Google Scholar
  29. [29]
    H. A. Laitinen,33 (1961) 1458.Google Scholar
  30. [30]
    W. Lorenz,Z. Elektrochem. 59 (1955) 730.Google Scholar
  31. [31]
    J. A. Rowland, Jr., C. E. Armantrout and D. F. Walsh,Trans. AIME (J. Metals) 203 (1955) 355.Google Scholar
  32. [32]
    C. J. Wen, B. A. Boukamp, R. A. Huggins and W. Weppner,J. Electrochem. Soc. 126 (1979) 2258.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Y. Iwadate
    • 1
  • M. Lassouani
    • 1
  • F. Lantelme
    • 1
  • M. Chemla
    • 1
  1. 1.Laboratoire d'Electrochimie, U.A.430Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations