Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 2, pp 303–314 | Cite as

Characteristics and properties of electrodeposited chromium from aqueous solutions

  • M. McCormick
  • S. J. Dobson
Papers

Abstract

The characteristics and properties of chromium deposited from sulphate-catalysed chromic acid solutions of varying composition over both a current density and temperature range have been examined. An attempt to interpret the mechanical test results on the basis of inherent crack incidence and crack length within the deposit has also been presented.

Comparisons between laboratory and commercial platings have established the viability of extrapolating the laboratory results, enabling test gun tube performance to be related to the various coating structures produced in the 120 mm barrel by the varying current density conditions experienced. These current density variations have been predicted using the boundary element numerical method which demonstrates the inherent problems associated with gun tube geometry.

Keywords

Chromium Crack Length Boundary Element Density Condition Inherent Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. E. Ryan,Met. Finish. 62 (1965) 46.Google Scholar
  2. [2]
    F. A. Lowenheim, ‘Electroplating’, McGraw-Hill, New York (1978).Google Scholar
  3. [3]
    J. L. Griffin,Plating 53 (1966) 196.Google Scholar
  4. [4]
    J. P. Hoare,J. Electrochem. Soc. 126 (1979) 190.Google Scholar
  5. [5]
    R. L. Sass and S. L. Ascher,Plating 41 (1954) 497.Google Scholar
  6. [6]
    D. Reinskonwski and C. A. Knorr,Z. Elektrochem. 58 (1954) 709.Google Scholar
  7. [7]
    R. Weiner,Met. Finish. 64 (1966) 46.Google Scholar
  8. [8]
    E. Leibricht,J. Electrochem. 33 (1927) 69.Google Scholar
  9. [9]
    ,Trans. Faraday Soc. 31 (1935) 1188.Google Scholar
  10. [10]
    J. Lin-Cai and D. Pletcher,J. Appl. Electrochem. 13 (1983) 235.Google Scholar
  11. [11]
    13 (1983) 245.Google Scholar
  12. [12]
    US Patent, 4450050 (1984).Google Scholar
  13. [13]
    M. A. Shluger,Russian Eng. J. 54 (1974) 72.Google Scholar
  14. [14]
    UK Provisional Patent, 84110.63 (1984).Google Scholar
  15. [15]
    J. C. Saiddington and G. R. Hoey,J. Electrochem. Soc. 117 (1970) 1011.Google Scholar
  16. [16]
    C. A. Snavely and C. L. Faust,97 (1950) 99.Google Scholar
  17. [17]
    M. McCormick, S. Y. S. Parn and D. Howe, AIChemE Annual Conference, Cleveland, Ohio (1983). Microfiche: paper 10e.Google Scholar
  18. [18]
    S. Y. S. Parn, M. McCormick and D. Howe,Trans. IMF 59 (1981) 61.Google Scholar
  19. [19]
    E. S. Chen and W. Baldauf, US Army Research and Development Command, Report No. ARLCB-TR-80008.Google Scholar
  20. [20]
    H. K. Pulker, A. J. Perry and R. Berger,Surf. Technol. 14 (1981) 25.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • M. McCormick
    • 1
  • S. J. Dobson
    • 1
  1. 1.Department of Electronic and Electrical EngineeringSheffield UniversitySheffieldUK

Personalised recommendations