Transition Metal Chemistry

, Volume 12, Issue 1, pp 58–62 | Cite as

Mixed-ligand complex-formation of (2,2′,2″-terpyridine) copper(II) with monosubstituted phenolates

  • Whei-Lu Kwik
  • Kok-Peng Ang
Full Papers


The copper(II)-phenolate oxygen interaction in several mixed-ligand complexes of copper(II) containing a 2,2′,2″-terpyridyl and a phenolate has been studied by i.r., electronic, e.p.r. spectroscopies and conductometric and polarographic measurements. Electronic spectral results demonstrate the dependence of such interaction on the nature of the phenol as well as the solvent. Partial dissociation of the phenolate from the complex was detected in methanol at low concentrations (≤1×10−4M). In dimethyl sulphoxide the complexes remain intact. The X-band e.p.r. spectral data obtained at ambient temperature and at 77 K are consistent with the results from the electronic spectral and conductometric study.


Copper Phenolate Catalysis Ambient Temperature Dimethyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W. L. Kwik and K. P. Ang,Aust. J. Chem.,31, 459, (1978).Google Scholar
  2. (2).
    W. L. Kwik, K. P. Ang and G. Chen,J. Inorg. Nucl. Chem.,42, 303, (1980).Google Scholar
  3. (3).
    W. L. Kwik and K. P. Ang,J. Chem. Soc., Dalton Trans., 452 (1981).Google Scholar
  4. (4).
    W. L. Kwik, K. P. Ang and P. C. Lau,J. Chem. Soc., Dalton Trans., 2269 (1983).Google Scholar
  5. (5).
    Whei-Lu Kwik and Kok-Peng Ang,Transition Met. Chem.,10, 50 (1985).Google Scholar
  6. (6).
    R. Cal, E. Rizzarelli, S. Silvio and S. Giuseppo,Transition Met. Chem.,4, 328 (1979).Google Scholar
  7. (7).
    T. N. Sorrell and A. S. Borovik,J. Chem. Soc., Chem. Commun., 1489 (1984).Google Scholar
  8. (8).
    K. D. Karlin, R. W. Cruse, Y. Gultneh, J. C., Hays and J. Zubieta,J. Am. Chem. Soc.,106, 3372 (1984).Google Scholar
  9. (9).
    O. Yamanche, K. Tsujide and A. Odani,J. Am. Chem. Soc.,107, 659 (1985).Google Scholar
  10. (10).
    A. Garnier-Suillerot, J. P. Albertire, A. Collet, L. Faurce, J. M. Paster and L. Tosi,J. Chem. Soc., Dalton Trans., 2544 (1981).Google Scholar
  11. (11).
    B. P. Gaber, J. Miskowski and T. G. Spiro,J. Am. Chem. Soc.,94, 6868 (1974).Google Scholar
  12. (12).
    S. Chaberak and A. E. Martell,Organic Sequestering Agents, Wiley, London, 1959.Google Scholar
  13. (13).
    R. B. Bonomo and F. Riggi,Transition Met. Chem.,9, 308 (1984).Google Scholar
  14. (14).
    J. M. Pastor, A. Garnier and L. Tosi,Inorganica Chimica Acta,37, L 549 (1979).Google Scholar
  15. (15).
    H. Kozlwoski, M. Bezer and L. D. Pettit,J. Inorg. Biochem.,18, 231 (1983).Google Scholar
  16. (16).
    R. J. W. Hefford and L. D. Pettit,J. Chem. Soc., Dalton Trans., 1331 (1981).Google Scholar
  17. (17).
    A. Gergely and T. Kiss,Inorganica Chimica Acta.,16, 51 (1976).Google Scholar
  18. (18).
    W. J. Geary,Coord. Chem. Rev.,7, 81 (1971).Google Scholar
  19. (19).
    B. R. James and R. J. P. Williams,J. Chem. Soc., 2007 (1961).Google Scholar
  20. (20).
    R. C. Van Landschoot, J. A. M. Van Hest and J. Reedijk,Inorganica Chimica Acta,72, 89 (1983).Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Whei-Lu Kwik
    • 1
  • Kok-Peng Ang
    • 1
  1. 1.Department of ChemistryNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations