Advertisement

Journal of Statistical Physics

, Volume 50, Issue 1–2, pp 345–375 | Cite as

Noise and bifurcations

  • C. Meunier
  • A. D. Verga
Articles

Abstract

The influence of while noise on bifurcating dynamical systems is investigated using both Fokker-Planck and functional integral methods. Noise leads to fuzzy bifurcations where physically relevant quantities become smooth functions of the bifurcation parameters. We study dynamical and probabilistic quantities, such as invariant measures, Liapunov exponents, correlation functions, and exit times. The behavior of these quantities near the deterministic bifurcation point changes for distinct values of the control parameter. Therefore the very concept of bifurcation point becomes meaningless and must be replaced by the notion of bifurcation region.

Key words

Dynamical systems bifurcations noise invariant measures Liapunov exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Haken,Synergetics: An Introduction (Springer-Verlag, New York, 1977).Google Scholar
  2. 2.
    C. Van Den Broeck, M. M. Mansour, and F. Baras,J. Stat. Phys. 28:557 (1982); F. Baras, M. M. Mansour, and C. Van Den Broeck,J. Stat. Phys. 28:577 (1982).Google Scholar
  3. 3.
    W. Horsthemke and R. Lefever,Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984).Google Scholar
  4. 4.
    E. Knobloch and K. A. Wiesenfeld,J. Stat. Phys. 33:611 (1983).Google Scholar
  5. 5.
    P. Coullet, C. Elphick, and E. Tirapegui,Phys. Lett. A 111:277 (1985).Google Scholar
  6. 6.
    F. Baras, P. Coullet, and E. Tirapegui,J. Stat. Phys. 45:745 (1986).Google Scholar
  7. 7.
    C. Elphick, M. Jeanneret, and E. Tirapegui, Stochastic resonance and limit cycle deformation of a supercritical Hopf bifurcation, Preprint, Universidad de Chile, Santiago (1987).Google Scholar
  8. 8.
    R. Graham and T. Tél,Phys. Rev. A 35:1328 (1987).Google Scholar
  9. 9.
    F. Langouche, D. Roekaerts, and E. Tirapegui, inField Theory, Quantization and Statistical Physics, E. Tirapegui, ed. (Reidel, Dordrecht, 1981), p. 295.Google Scholar
  10. 10.
    R. Graham,Z. Phys. B 26:281 (1977).Google Scholar
  11. 11.
    M. I. Freidlin,Functional Integration and Partial Differential Equations (Princeton, New Jersey, 1985).Google Scholar
  12. 12.
    R. L. Stratonovitch,Sel. Transl. Math. Stat. Prob. 10:273 (1971).Google Scholar
  13. 13.
    E. Gozzi,Phys. Rev. D 28:1922 (1983).Google Scholar
  14. 14.
    J. Glimm and A. Jaffe,Quantum Physics (Springer-Verlag, New York, 1981).Google Scholar
  15. 15.
    S. R. S. Varadhan,Diffusion Problems and Partial Differential Equations (Tata Institute of Fundamental Research, Bombay, 1980).Google Scholar
  16. 16.
    Z. Schuss,Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).Google Scholar
  17. 17.
    U. Weiss,Phys. Rev. A 25:2444 (1982).Google Scholar
  18. 18.
    M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer-Verlag, New York, 1984).Google Scholar
  19. 19.
    J. Iliopoulos, C. Itzykson, and A. Martin,Rev. Mod. Phys. 47:165 (1977).Google Scholar
  20. 20.
    E. Brézin, J.-C. Le Guillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976), p. 125.Google Scholar
  21. 21.
    R. Bausch, H. K. Jansen, and H. Wagner,Z. Phys. B 24:113 (1976).Google Scholar
  22. 22.
    J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,Phys. Rev. A 20:1589 (1981).Google Scholar
  23. 23.
    J.-F. Luciani and A. D. Verga,EuroPhys. Lett. 4(3):225 (1987).Google Scholar
  24. 24.
    D. Ludwig,SIAM Rev. 17:605 (1975).Google Scholar
  25. 25.
    V. I. Arnold,Chapitres supplémentaires de la Théorie des Équations Différentielles Ordinaires (MIR, Paris, 1980).Google Scholar
  26. 26.
    J. Guckenheimer and P. Holmes,Non-linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).Google Scholar
  27. 27.
    L. P. Shilnikov,Math. SSSR Sb. 10:91 (1970).Google Scholar
  28. 28.
    A. Arneodo, P. Coullet, and C. Tresser,J. Stat. Phys. 27:171 (1982).Google Scholar
  29. 29.
    J. E. Marsden and M. McCracken,The Hopf Bifurcation and its Applications (Springer-Verlag, New York, 1983).Google Scholar
  30. 30.
    Y. Pomeau and P. Manneville,Commun. Math. Phys. 74:189 (1980).Google Scholar
  31. 31.
    C. Zeeman, Communication at the Conference on Theoretical and Numerical Problems in the Study of Chaotic Ordinary Differential Equations, June–July 1986, King's College Research Centre, University of Cambridge.Google Scholar
  32. 32.
    J.-P. Eckmann, L. Thomas, and P. Wittwer,J. Phys. A 14:3153 (1981).Google Scholar
  33. 33.
    M.-N. Bussac and C. Meunier,J. Phys. (Paris) 43:585 (1982).Google Scholar
  34. 34.
    C. Meunier,J. Stat. Phys. 36:321 (1984).Google Scholar
  35. 35.
    J. E. Hirsch, B. A. Huberman, and D. J. Scalapino,Phys. Rev. A 25:519 (1982).Google Scholar
  36. 36.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products (Academic Press, New York, 1965), p. 641.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • C. Meunier
    • 1
  • A. D. Verga
    • 1
    • 2
  1. 1.Centre de Physique ThéoriqueL.P. 14 CNRS, École PolytechniquePalaiseauFrance
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations