Skip to main content
Log in

Probes of equipartition in nonlinear Hamiltonian systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The time scales for equipartition to be reached are studied using a generalization of the recently introduced measure of ergodicity in liquids. Theβ-Fermi-Pasta-Ulam model is chosen as an illustration. The measures are constructed by following the evolution of the systems using two independent initial conditions. The time-averaged property of an observable is calculated using the two dynamical trajectories. The measure is essentially the norm in the space of the observable obtained from the two trajectories. We show that the time-dependent behavior of the measure is a good indicator of the equipartition in large nonlinear systems. The numerical results show that equipartitioning critically depends on the initial conditions, and even when adequate mode mixing occurs the time scales appear to be extremely long.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Diana, L. Galgani, M. Casartelli, G. Casati, and A. Scotti,Theor. Math. Phys. 29:1022 (1976).

    Google Scholar 

  2. P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger,Phys. Rev. A 2:2013 (1970).

    Google Scholar 

  3. G. Bennetin, G. Lo Vecchio, and A. Tenenbaum,Phys. Rev. A 22:1709 (1980).

    Google Scholar 

  4. R. Livi, M. Petini, S. Ruffo, M. Sparpaglione, and A. Vulpiani,Phys. Rev. A 31:1039, 2740 (1985).

    Google Scholar 

  5. A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion (Springer-Verlag, New York, 1983).

    Google Scholar 

  6. M. Pettini and A. Vulpiani,Phys. Lett. 106A:207 (1980).

    Google Scholar 

  7. P. Ehrenfest and T. Ehrenfest,The Conceptual Foundations in Mechanics (Cornell University Press, Ithaca, New York, 1959).

    Google Scholar 

  8. A. Houghton, S. Jain, and A. P. Young,Phys. Rev. B 28:2630 (1983); D. Thirumalai and T. R. Kirkpatrick,Phys. Rev. B 38:4881 (1988).

    Google Scholar 

  9. F. M. Izrailev and B. V. Chirikov,Sov. Phys. Dokl. 11:30 (1966).

    Google Scholar 

  10. B. Callegari, M. Carotta, C. Ferrario, G. Lo Vecchio, and L. Galgani,Nuovo Cimento B 54:463 (1979); L. Galgani and G. Lo Vecchio,Nuovo Cimento B 52:1 (1979).

    Google Scholar 

  11. G. Bennetin and A. Tenenbaum,Phys. Rev. A 28:3020 (1983).

    Google Scholar 

  12. D. Thirumalai, R. D. Mountain, and T. R. Kirkpatrick,Phys. Rev. A 39:3563 (1989).

    Google Scholar 

  13. R. D. Mountain and D. Thirumalai,J. Phys. Chem. 93:6975 (1989).

    Google Scholar 

  14. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Science Laboratory Report No. LA-1940 (1955) (unpublished); also inCollected works of Enrico Fermi, Vol. 2 (University of Chicago Press, Chicago, 1965), p. 978.

  15. B. I. Henry and J. Grindlay,Phys. Rev. A 38:2594 (1988).

    Google Scholar 

  16. J. Ford,J. Math. Phys. 2:387 (1961); J. Ford and J. Waters,J. Math. Phys. 4:1293 (1963).

    Google Scholar 

  17. T. R. Kirkpatrick and D. Thirumalai,J. Phys. A 22:L149 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirumalai, D., Mountain, R.D. Probes of equipartition in nonlinear Hamiltonian systems. J Stat Phys 57, 789–801 (1989). https://doi.org/10.1007/BF01022832

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022832

Key words

Navigation