Advertisement

Journal of Statistical Physics

, Volume 57, Issue 3–4, pp 581–593 | Cite as

Hard-sphere binary-collision operators

  • J. R. Dorfman
  • M. H. Ernst
Articles

Abstract

The time displacement operator is described for a system of hard-sphere particles. We show how to avoid needing a representation for this operator in unphysical regions of phase space, and how to construct a useful representation in terms of binary collision operators in the physical region. The various binary collision operators used for hard-sphere systems are derived for the case of a system of two spheres, and the results are generalized toN-particle systems.

Key words

Binary collision operator hard spheres kinetic theory Liouville operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. D. Cohen and I. M. de Schepper, inFundamental Problems in Statistical Mechanics IV, E. G. D. Cohen and W. Fiszdon, eds. (Ossolineum, Wroclaw, 1978), p. 101.Google Scholar
  2. 2.
    T. R. Kirkpatrick and J. R. Dorfman, inMolecular Dynamics Simulations of Statistical Mechanical Systems, G. Ciccoti and W. Hoover, eds. (Plenum Press, New York, 1986), p. 260.Google Scholar
  3. 3.
    C. F. W. Götze, inProceedings of the NATO Advanced Study Institute on Amorphous and Liquid Materials, E. Lüscheu, G. Jacucci, and G. Fritsch, eds. (Reidel, Dordrecht, 1986).Google Scholar
  4. 4.
    M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen,Physica 45:127 (1969).Google Scholar
  5. 5.
    H. van Beijeren and J. R. Dorfman,J. Stat. Phys. 23:335 (1980).Google Scholar
  6. 6.
    J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6:776 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • J. R. Dorfman
    • 1
    • 2
  • M. H. Ernst
    • 3
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.Department of Physics and AstronomyUniversity of MarylandCollege Park
  3. 3.Instituut voor Theoretische FysicaRijksuniversiteit, UtrechtTA UtrechtThe Netherlands

Personalised recommendations