Journal of Statistical Physics

, Volume 57, Issue 3–4, pp 511–530 | Cite as

Statistical mechanics of flux lines in high-T c superconductors

  • David R. Nelson


A theory of the entangled flux liquids which arise in the new high-T c superconductors is reviewed. New physics appears because of the weak interplanar couplings and high critical temperatures in these materials. Flux line wandering melts the conventional Abrikosov flux lattice, and leads to an entangled vortex state whose statistical mechanics is closely related to the physics of interacting bosons in two dimensions. The phase diagram as a function of magnetic field and temperature is discussed, and it is argued that an entangled vortex liquid appears just aboveHc1 at all nonzero temperatures. The decay of vortex line correlations in the entangled liquid state is controlled by the superfluid excitation spectrum of the bosons. Line wandering produces drastic changes in theB(H) constitutive relation nearHc1.

Key words

Superconductors flux lines bosons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rice,Z. Phys. B 67:141 (1987), and references therein.Google Scholar
  2. 2.
    C. Dasgupta and B. I. Halperin,Phys. Rev. Lett. 47:1556 (1981).Google Scholar
  3. 3.
    E. Brézin, D. R. Nelson, and A. Thiaville,Phys. Rev. B 31:7124 (1985).Google Scholar
  4. 4.
    D. R. Nelson,Phys. Rev. Lett. 60:1973 (1988).Google Scholar
  5. 5.
    D. R. Nelson and H. S. Seung,Phys. Rev. B 39:9153 (1989).Google Scholar
  6. 6.
    P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop,Phys. Rev. Lett. 61:1666 (1988).Google Scholar
  7. 7.
    R. B. van Dover, L. F. Schneemeyer, E. M. Gyorgy, and J. V. Waszczak,Phys. Rev. B (in press).Google Scholar
  8. 8.
    P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak,Phys. Rev. Lett. 59:2592 (1987).Google Scholar
  9. 9.
    D. R. Nelson, inPhase Transitions and Critical Phenomena, Vol. 7, C. Domb and J. L. Lebowitz, ed. (Academic, New York, 1983), p. 1.Google Scholar
  10. 10.
    D. S. Fisher,Phys. Rev. B 22:1190 (1980).Google Scholar
  11. 11.
    M. P. A. Fisher and D. H. Lee,Phys. Rev. B 39:2756 (1989).Google Scholar
  12. 12.
    A. L. Fetter and P. C. Hohenberg, inSuperconductivity, Vol. 2, R. D. Parks, ed. (Dekker, New York, 1969).Google Scholar
  13. 13.
    M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975).Google Scholar
  14. 14.
    S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and W. F. Brinkman,Phys. Rev. B 25:349 (1982); J. Villain and P. Bak,J. Phys. 42:657 (1981).Google Scholar
  15. 15.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (W. A. Benjamin, Reading, Massachusetts, 1972).Google Scholar
  16. 16.
    D. M. Ceperley and E. L. Pollock,Phys. Rev. Lett. 56:351 (1986); E. L. Pollock and D. M. Ceperley,Phys. Rev. B 36:8343 (1987); D. N. Ceperley and E. L. Pollock,Phys. Rev. B 39:2084 (1989).Google Scholar
  17. 17.
    T. A. Kavassalis and J. Noolandi,Phys. Rev. Lett. 59:2674 (1987).Google Scholar
  18. 18.
    P. G. deGennes and J. Matricon,Mod. Phys. 36:45 (1964).Google Scholar
  19. 19.
    R. Labusch,Phys. Stat. Sol. 32:439 (1969).Google Scholar
  20. 20.
    A. L. Fetter, P. C. Hohenberg, and P. Pincus,Phys. Rev. 147:140 (1966).Google Scholar
  21. 21.
    A. Houghton, R. A. Pelcovits, and A. Sudbo, Preprint, Brown University.Google Scholar
  22. 22.
    E. H. Brandt and U. Essman,Phys. Stat. Sol. 144:13 (1987), and references therein.Google Scholar
  23. 23.
    D. Ceperley, G. V. Chester, and M. H. Kalos,Phys. Rev. B 17:1070 (1978).Google Scholar
  24. 24.
    M. Schick,Phys. Rev. A 3:1067 (1971).Google Scholar
  25. 25.
    D. S. Fisher, M. P. A. Fisher, and D. Huse, in preparation.Google Scholar
  26. 26.
    J. W. Elkin, B. Serin, and J. R. Clem,Phys. Rev. B 9:912 (1974).Google Scholar
  27. 27.
    D. Cribier, B. Jacrot, L. M. Rao, and B. Farnoux,Phys. Rev. Lett. 9:106 (1964).Google Scholar
  28. 28.
    R. Wördenweber and P. H. Kes,Phys. Rev. B 34:494 (1986); E. H. Brandt,Phys. Rev. B 34:6514 (1986);Jap. J. Appl. Phys. 26:1515 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • David R. Nelson
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridge

Personalised recommendations