Biophysics of structure and mechanism

, Volume 1, Issue 1, pp 27–45 | Cite as

A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers

  • F. Conti
  • R. Fioravanti
  • F. Malerba
  • E. Wanke


Changes in extrinsic fluorescence intensity, associated with step changes in membrane potential, have been studied in intracellularly or extracellularly stained squid axons, and in lipid bilayers, using six different aminonaphthalene dyes: 1,8-TNS; 2,6-TNS; 1,8-MANS; 2,6-MANS; 2,6-ANS and NPN. In all preparations the optical signals were found to be roughly proportional to the voltage applied. All signals had a very fast initial component, which was followed in some case by a slower change in the same direction. The slow component was observed only in intracellularly stained axons, and not for all chromophores studied. 1,8-TNS, 1,8-MANS and 2,6-MANS yielded the largest fluorescence signals in all preparations. The sign of these signals was independent of the type of membrane studied. However, the fluorescence changes of 2,6-MANS were opposite to those of 1,8-TNS and 1,8 MANS. Staining of both sides of the axolemma with 1,8-MANS or 2,6-MANS showed that these dyes yield larger signals when applied to the extracellular face. The changes in fluorescence light intensity of 2,6-TNS, 2,6-ANS and NPN were smaller and their sign depended on the membrane preparation studied. The comparison of the extrinsic fluorescence signals from the nerve membrane and the phosphatidylcholine bilayer suggests strong similarities between the basic structures of the two systems. The variety of observed signals cannot be easily interpreted in terms of changes in membrane structure. A possible alternative interpretation in terms of electrically induced displacements, rotations and changes in partition coefficient of bound chromophores, is discussed.

Key words

Fluorescence Nerves Bilayers 



1-toluidinonaphthalene-8-sulfonate, and similarly, 2,6-TNS


1-N-methylanilinonaphthalene-8-sulfonate, and similarly, 2,6-MANS


1-anilinonaphthalene-8-sulfonate, and similarly, 2,6-ANS




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, D. M., Haydon, D. A.: Electron microscope studies of lipid bilayers membranes. J. molec. Biol.32, 149–150 (1968)Google Scholar
  2. Barker, R. W., Barrett-Bee, K., Berden, J. A., McCall, C. E., Radda, G. K.: Sidedness and location of small molecules in membranes. In: Dynamics of energy-transducing membranes (Ernster, L., Estabrook, R. W., Slater, E. C., Eds.). Amsterdam: Elsevier Publ. Co. 1974Google Scholar
  3. Brand, L., Seliskar, C. J., Turner, D. C.: The effects of chemical environment of fluorescent probes. In: Probes of structure and function of macromolecules and membranes, vol. 1, p. 17–31 (Chance, B., Lee, C. P., Blasie, J. K., Eds.). New York: Academic Press Inc. 1971Google Scholar
  4. Camay, L. D., Barry, W. H.: Turbidity, birefringence and fluorescence changes in skeletal muscle coincident with the action potential. Science165, 608–609 (1969)Google Scholar
  5. Camay, L. D., Tasaki, I.: Ion exchange properties and excitability of the squid giant axon. In: Biophysics and physiology of excitable membranes, p. 379–422 (Adelman, W. J., Ed.). New York: Van Nostrand Reinhol Co. 1971Google Scholar
  6. Cohen, L. B.: Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev.53, 373–478 (1973)Google Scholar
  7. Cohen, L. B., Landowne, D., Shrivastav, B. B., Ritchie, J. M.: Changes in fluorescence of squid axons during activity. Biol. Bull.139, 18 (1970)Google Scholar
  8. Conti, F.: Recenti sviluppi nello studio della struttura e del funzionamento della membrana nervosa. In: Atti del II Congresso Nazionale di Cibernetica, p. 61–76 (Baldocchi, M. A., Ed.). Pisa: Lito Felici 1972Google Scholar
  9. Conti, F., Malerba, F.: Cambiamenti di fluorescenza estrinseca in membrane fosfolipidiche durante sollecitazione elettrica. In: Atti del I Congresso di Cibernetica, vol. I, p. 375–384 (Baldocchi, M. A., Lenci, F., Eds.). Pisa: Lito Felici 1971Google Scholar
  10. Conti, F., Malerba, F.: Fluorescence signals in ANS-stained lipid bilayers under applied potentials. Biophysik8, 326–332 (1972)Google Scholar
  11. Conti, F., Tasaki, I.: Changes in extrinsic fluorescence in squid axons during voltage-clamp. Science169, 1322–1324 (1970)Google Scholar
  12. Conti, F., Tasaki, I., Wanke, E.: Fluorescence signals in ANS-stained squid giant axons during voltage-clamp. Biophysik8, 58–70 (1971)Google Scholar
  13. Conti, F., Wanke, E.: Changes produced by electrical stimulation in the extrinsic ANS fluorescence of nerve membranes. In: Proc. First Europ. Biophysics Congress, Vol. V, p. 199–206. (Broda, E., Locker, A., Springer-Lederer, H., Eds.). Wien: Verlag der Wiener Medizinischen Akademie 1971Google Scholar
  14. Cory, R. P., Becker, R. R., Rosenblut, R., Isenberg, I.: Synthesis and fluorescent properties of some N-methyl-2-anilino-6-naphthaleneaulfonyl derivatives. J. Amer. chem. Soc.90, 1643–1647 (1968)Google Scholar
  15. Davila, H. V., Cohen, L. B., Waggoner, A. S.: Changes in axon fluorescence during activity. Biophys. J.12, 124a (1972).Google Scholar
  16. Frankenhaeusern, B., Hodgkin, A. L.: The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol. (Lond.)131, 341–376 (1956)Google Scholar
  17. Gilbert, D. L., Ehrenstein, G.: Effect of divalent cations on potassium conductance of squid axons; determination of surface charge. Biophys. J.9, 447–463 (1969)Google Scholar
  18. Gulik-Krzywicki, T., Shechtev, E., Iwatsubo, M., Ranck, J. L., Luzzatti, V.: Correlations between structure and spectroscopic properties in membrane model systems. Tryptophan and 1-anilino-8-naphthalene-sulfonate fluorescence in protein-lipid-water phase. Biochim. biophys. Acta (Amst.)219, 1–10 (1970)Google Scholar
  19. Keynes, R. D.: Excitable membranes. Nature (Lond.)239, 29–32 (1972)Google Scholar
  20. Lesslauer, W., Cain, J., Blasie, J. K.: On the location of 1-anilino-8-naphthalene-sulfonate in lipid model systems. An X-ray diffraction study. Biochim. biophys. Acta (Amst.)241, 547–566 (1971)Google Scholar
  21. Radda, G. K., Vanderkooi, J.: Can fluorescent probes tell us anything about membranes ? Biochim. biophys. Acta (Amst.)265, 509–549 (1972)Google Scholar
  22. Seliskar, C. J., Brand, L.: Electronic spectra of 2-Aminonaphthalene-6-sulfonate and related molecules. II. Effects of solvent medium on the adsorption and fluorescence spectra. J. Amer. chem. Soc.93, 5414–5420 (1971)Google Scholar
  23. Stryer, L.: Fluorescence spectroscopy of proteins. Science162, 526–533 (1969)Google Scholar
  24. Szabo, G., Eisenman, G., Ciani, S.: The effects of the macrotetralide actin antibiotica on the electric properties of phospholipid bilayer membranes. J. Membr. Biol.1, 346–382 (1969)Google Scholar
  25. Tasaki, I., Carnay, L., Sandlin, R., Watanabe, A.: (1) Fluorescence changes during conduction in nerves stained with acridine orange. Science163, 683–685 (1969)Google Scholar
  26. Tasaki, I., Carnay, L., Watanabe, A.: (2) Transient changes in extrinsic fluorescence of nerve produced by electric stimulation. Proc. nat. Acad. Sci. (Wash.)64, 1362–1368 (1969)Google Scholar
  27. Tasaki, I., Carnay, L., Sandlin, R., Carnay, L.: Changes in fluorescence, turbidity, and birefringence associated with verne excitation. Proc. nat. Acad. Sci. (Wash.)61, 883–888 (1968)Google Scholar
  28. Tasaki, I., Carnay, L., Takenaka, I.: Resting and action potential of intracellularly perfused giant axon. Proc. nat. Acad. Sci. (Wash.)48, 1177–1184 (1962)Google Scholar
  29. Turner, D. C., Brand, L.: Quantitative estimation of protein binding site polarity. Fluorescence of N-Arylaminonaphthalenesulfonates. Biochemistry7, 3381–3390 (1968)Google Scholar
  30. Vanderkooi, J., Martonosi, A.: Sarcoplasmic reticulum. VIII. Use of 8-anilino-1-naphthalenesulfonate as conformational probe on biological membranes. Arch. Biochem. Biophys.133, 153–163 (1969)Google Scholar
  31. Weber, G.: Polarization of the fluorescence of macromolecules. 2. Fluorescent conjugates of avalbumin and bovine serum albumin. Biochem. J.51, 155–167 (1952)Google Scholar
  32. Yguerabide, J., Stryer, L.: Fluorescence spectrosoopy of an oriented model membrane. Proc. nat. Acad. Sci. (Wash.)68, 1217–1221 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • F. Conti
    • 1
  • R. Fioravanti
    • 1
  • F. Malerba
    • 1
  • E. Wanke
    • 1
  1. 1.Laboratorio di Cibernetica e Biofisica del C. N. R.CamogliItaly

Personalised recommendations