Journal of Chemical Ecology

, Volume 14, Issue 1, pp 159–180 | Cite as

Electroantennogram responses of the mediterranean fruit fly,Ceratitis capitata, to a spectrum of plant volatiles

  • Douglas M. Light
  • Eric B. Jang
  • Joseph C. Dickens


Electroantennograms (EAGs) were recorded from unmated, laboratory-reared, male and femaleCeratitis capitata (medfly) in response to a range of C1 and C2 to C12 carbon chain-length aliphatic alcohols, aldehydes, acetates, and acids, and lactones, some of which are known volatiles from leaves and fruits. A large degree of EAG response uniformity between the sexes was observed, with only eight of the 70 compounds tested eliciting significantly larger amplitude EAG responses from female than male antennae. In general, for the five functional-group series tested, aldehydes and alcohols elicited greater responses than acetates, lactones, and acids. The unsaturated alcohols, aldehydes, acetates, and acids elicited equal or larger amplitude EAG responses than their comparable saturated compounds. For four of the functional-group series tested, the EAG response amplitude was significantly greater for a particular carbon chain length, with responsiveness to primary alcohols and aldehydes peaking at C6, acids peaking at C5–6, and acetates peaking at both C5 and C8. The EAG responses to both the 2- and 3-position monoenic alcohols peaked at C6 and C8, while the secondary alcohols peaked at C7. The greatest EAG responses of all compounds tested were elicited by monoenic C6 alcohols and aldehydes that are constituents of the “general green-leaf odor” that emanates from most plants. The potential adaptive benefit of selective sensitivity to green-leaf volatiles is discussed in regard to foraging behavior of medflies.

Key words

Diptera Tephritidae Mediterranean fruit fly Ceratitis capitata plant volatiles fruit volatiles green-leaf volatiles olfaction electrophysiology electroantennogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, R., Herbert, R.H., andGrant, G.G. 1985. Isolation and identification of the sex pheromone of the Mediterranean fruit fly,Ceratitis capitata (Wied.).J. Chem. Soc., Chem. Commun. 12:824–825.Google Scholar
  2. Bateman, M.A. 1972. The ecology of fruit flies.Annu. Rev. Entomol. 17:493–518.Google Scholar
  3. Boeckh, J. 1962. Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengräfers (Necrophorus, Coleoptera).Z. Vergl. Physiol. 46:212–248.Google Scholar
  4. Boeckh, J. 1967. Inhibition and excitation of single insect olfactory receptors, and their role as a primary sensory code, pp. 721–735, in T. Hyashi, (ed.). II International Symposium on Ol-faction and Taste. Pergamon Press, Oxford.Google Scholar
  5. Boeckh, J., Kaissling, K.E., andSchneider, D. 1965. Insect olfactory receptors.Cold. Spring Harbor Symp. Quant. Biol. 30:263–280.Google Scholar
  6. Buttery, R.G. 1981. Vegetable and fruit flavors, pp. 175–216,in R. Teranishi, R.A. Flath, and H. Sugisawa (eds.) Flavor Research, Recent Advances. Marcel Dekker, New York.Google Scholar
  7. Christenson, L.D., andFoote, R.H. 1960. Biology of fruit flies,Annu. Rev. Entomol. 5:171–192.Google Scholar
  8. Cytrynowicz, M., Morgante, J.S., andDe Souza, H.M. 1984. Visual responses of South American fruit flies and Mediterranean fruit flies to colored rectangles and spheres.Environ. Entomol. 11:1202–1210.Google Scholar
  9. Dickens, J.D. 1984. Olfaction in the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae): Electroantennogram studies.J. Chem. Ecol. 10:1759–1785.Google Scholar
  10. Dickens, J.C. andBoldt, P.E. 1985. Electroantennogram responses ofTrirhabda bacharides (Weber) (Coleoptera: Chrysomelidae) to plant volatiles.J. Chem. Ecol. 11:767–779.Google Scholar
  11. Dickens, J.C., andPayne, T.L. 1977. Bark beetle olfaction: Pheromone receptor system inDendroctonus frontalis.J. Insect Physiol. 23:481–489.Google Scholar
  12. Fein, B.L., Reissig, W.H., andRoelofs, W.L. 1982. Identification of apple volatiles attractive to the apple maggot,Rhagoletis pomonella.J. Chem. Ecol. 8:1473–1487.Google Scholar
  13. Féron, M. 1962. L'instinct de reproduction chez la mouche mediterraneene des fruitsCeratitis capitata. Comportement sexuel. Comportement de ponte.Rev. Pathol. Veg. Entomol. Agric. Fr. 41:1–129.Google Scholar
  14. Flath, R.A., andForrey, R.R. 1977. Volatile components of papaya (Caricapapaya L., Solo variety).J. Agric. Food Chem. 25:103–109.Google Scholar
  15. Guerin, P.M., andStädler, E. 1982. Host odour perception in three phytophagous Diptera—a comparative study, pp. 95–105,in J.H. Visser and A.K. Minks (eds.). Proceedings, 5th International Symposium Insect-Plant Relationships. Pudoc, Wageningen.Google Scholar
  16. Guerin, P.M., andVisser, J.H. 1980. Electroantennogram responses of the carrot fly,Psila rosae, to volatile plant components.Physiol. Entomol. 5:111–119.Google Scholar
  17. Guerin, P.M.,Remund, U.,Boler, E.F.,Katsoyannos, B., andDelrio, G. 1983a. Fruit fly electroantennogram and behavior responses to some generally occurring fruit volatiles, pp. 248–251,in R. Cavalloro ed. Proceedings CEC and IOBC International Symposium Fruit Flies of Economic Importance, Athens, Greece, A.A. Balkema, Rotterdam.Google Scholar
  18. Guerin, P.M., Städler, E., andBuser, H.R. 1983b. Identification of host plant attraetants for the carrot fly,Psila rosae.J. Chem. Ecol. 9:843–861.Google Scholar
  19. Hagen, K.W., Allen, W.W., andTassan, R.L. 1981. Mediterranean fruit fly: The worst may be yet to come.Calif. Agric. 35:5–7.Google Scholar
  20. Hood Henderson, D.E., andWellington, W.G. 1982. Antennal sensilla of some aphidophagous Syrphidae (Diptera): Fine structure and electroantennograme study.Can. J. Zool. 60:3172–3186.Google Scholar
  21. Kaissling, K.E. 1971. Insect olfaction, pp. 351–431,in L. Beidler (ed.). Handbook of Sensory Physiology, Vol. IV, Chemical Senses, 1 Olfaction. Springer-Verlag, New York.Google Scholar
  22. Kefford, J.F., andChandler, B.V. 1970. Volatile flavoring constituents, pp. 87–111,in The Chemical Constituents, of Citrus Fruits. Academic Press. New York.Google Scholar
  23. Keiser, I., Harris, E.J., andMiyashita, D.H. 1975. Attraction of ethyl ether extracts of 232 botanicals to oriental fruit flies, melon flies, and Mediterranean fruit flies.Lloydia 31:141–152.Google Scholar
  24. Kozlowski, M.W., andVisser, J.H. 1981. Host-plant-related properties of the antennal olfactory system in the oak flea weevil,Rhynchaenus quercus. Electroantennogram study.Entomol. Exp. Appl. 30:169–175.Google Scholar
  25. Levinson, H.Z., andHaisch, A. 1984. Optical and chemosensory stimuli involved in host recognition and oviposition of the cherry fruit fly,Rhagoletis cerasi L. Z.Angew. Entomol. 97:85–91.Google Scholar
  26. Light, D.M. 1983. Sensitivity of antennae of male and femaleIps paraconfusus (Coleoptera: Scolytidae) to their natural aggregation pheromone and its enantiomeric components.J. Chem. Ecol. 9:561–583.Google Scholar
  27. Light, D.M. 1986. Central integration of sensory signals: An exploration of processing of pheromonal and multimodal information in lepidopteran brains, pp. 287–301,in T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.). Mechanisms in Insect Olfaction. Oxford University Press, Oxford.Google Scholar
  28. Nakagawa, S., Prokopy, R.J., Wong, T.Y., Ziegler, J.R., Mitchell, S.M., Urago, T., andHarris, E.J. 1978. Visual orientation ofCeratitis capitula flies to fruit models.Entomol. Exp. Appl. 24:193–198.Google Scholar
  29. Payne, T.L. 1975. Bark beetle olfaction. III. Antennal olfactory responsiveness ofDendroctonus frontalis Zimmerman andD. brevicomis Le Conte (Coleoptera: Scolytidae) to agregation pheromones and host tree terpene hydrocarbons.J. Chem. Ecol. 1:233–242.Google Scholar
  30. Prokopy, R.J. 1986. Visual and olfactory stimulus interaction in resource finding by insects, pp. 81–89,in T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.). Mechanisms in Insect Olfaction. Oxford University Press, Oxford.Google Scholar
  31. Prokopy, R.J., andEconomopoulos, A.P. 1976. Color responses ofCeratitis capitata flies. Z.Angew. Entomol. 80:434–437.Google Scholar
  32. Prokopy, R.J., andRoitberg, B.D. 1984. Foraging behavior of true fruit flies.Am. Sci. 72:41–49.Google Scholar
  33. Prokopy, R.J., Moericke, V., andBush, G.L. 1973. Attraction of apple maggot flies to odor of apples.Environ. Entomol. 2:743–749.Google Scholar
  34. Prokopy, R.J., Papaj, D.R., andWong, T.Y. 1986. Fruit-foraging behavior of Mediterranean fruit fly females on host and non-host plants.Fl. Entomol. 69:651–657.Google Scholar
  35. Reissig, W.H., Fein, B.L., andRoelofs, W.L. 1982. Field tests of synthetic apple volatiles as apple maggot attractants.Environ. Entomol. 11:1294–1298.Google Scholar
  36. Schneider, D. 1957a. Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des SeidenspinnersBombyx mori L. Z.Vergl. Physiol. 40:8–41.Google Scholar
  37. Schneider, D. 1957b. Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation.Experientia 13:89–91.Google Scholar
  38. Schneider, D. 1969. Insect olfaction: Deciphering system for chemical messages.Science 163:1031–1036.Google Scholar
  39. Snedecor, G.W., andCochran, W.G. 1967. Statistical Methods, 6th ed. Iowa State University Press, Ames.Google Scholar
  40. Van Straten, S., andMaarse, H. 1983. Volatile Compounds in Food, 5th ed. Central Institute for Nutrition and Food Research TNO, Zeist, The Netherlands.Google Scholar
  41. Van Der Pers, J.N.C. 1981. Comparison of electroantennogram response spectra to plant volatiles in seven species ofYponomeuta and in the torticidAdoxophyes orana.Entomol. Exp. Appl. 30:181–192.Google Scholar
  42. Van Der Pers, J.N.C., Haniotakis, G.E., andKing, B.M. 1984. Electroantennogram responses from olfactory receptors inDacus oleae.Entomol. Hellen. 2:47–53.Google Scholar
  43. Visser, J.H. 1979. Electroantennogram responses of the Colorado beetle,Leptinotarsa decemlineata to plant volatiles.Entomol. Exp. Appl. 25:86–97.Google Scholar
  44. Visser, J.H. 1983. Differential sensory perceptions of plant compounds by insects.Am. Chem. Soc. Symp. Ser. 208:215–230.Google Scholar
  45. Visser, J.H. 1986. Host odor perception in phytophagous insects.Annu. Rev. Entomol. 31:121–144.Google Scholar
  46. Visser, J.H., andAve, D.A. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle,Leptinotarsa decemlineata.Entomol. Exp. Appl. 24:538–549.Google Scholar
  47. Visser, J.H., Van Straten, S., andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:13–25.Google Scholar
  48. Wellso, S.G., Buttery, R.G., andHoxie, R.P. 1984. Electroantennogram responses of the armyworm (Lepidoptera: Noctuidae) and cereal leaf beetle (Coleoptera: Chrysomelidae) to volatile chemicals of seedling oats.Great Lakes Entomol. 17:151–154.Google Scholar
  49. Yan, F., andVisser, J.H. 1982. Electroantennogram response of the cereal aphid,Sitobion avenae, to plant volatile components, pp. 387–388,in J.H. Visser and A.K. Minks (eds.). Proceedings, 5th International Symposium Insect-Plant Relationships, Pudoc, Wageningen.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Douglas M. Light
    • 1
  • Eric B. Jang
    • 2
  • Joseph C. Dickens
    • 3
  1. 1.USDA-ARS Western Regional Research CenterAlbany
  2. 2.USDA-ARS Tropical Fruit and Vegetable LaboratoryHilo
  3. 3.USDA-ARS Boll Weevil Research LaboratoryMississippi State

Personalised recommendations