Skip to main content
Log in

Temperature-independent hyperfine field on μ+ in nickel in the temperature range of 0.12–300 K

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The hyperfine field on a positive muon at interstitial site in a nickel single crystal has been measured by the muon spin rotation method in the temperature range from 0.12 K to 300 K. The hyperfine field in the low temperature limit was found to be −640.7±2.2 Gauss. While the saturation magnetization decreases by 7% as the temperature increases from 0.1 K to 300 K, the hyperfine field seen by the muon remains nearly constant. Possible mechanisms for explaining this result are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L.G. Foy, N. Heiman, W.J. Kossler and C.E. Stronach, Phys. Rev. Lett. 30 (1973) 1064.

    Google Scholar 

  2. B.D. Patterson, K.M. Crowe, F.N. Gygax, R.F. Johnson, A.M. Portis and J.H. Brewer, Phys. Lett. A46 (1974) 453.

    Google Scholar 

  3. B.D. Patterson and L.M. Falicov, Sol. State Comm. 15 (1974) 1509.

    Google Scholar 

  4. P. Jena, preprint (1975).

  5. K. Nagamine, S. Nagamiya, O. Hashimoto, T. Yamazaki and B.D. Patterson Contribution to the 6th Int. Conf. on high energy physics and nuclear structure, Santa Fe and Los Alamos, 1975; Hyperfine Interactions, to be published.

  6. K.M. Crowe, J.F. Hague, J.E. Rothberg, A. Schenck, D.L. Williams, R.M. Williams and K.K. Young, Phys. Rev. D5 (1972) 2145.

    Google Scholar 

  7. K. Nagamine, N. Nishida and H. Ishimoto, Nucl. Instr. 105 (1972) 265.

    Google Scholar 

  8. R. Radebaugh, J.C. Hoeste and J.D. Siegwarth, Contribution to the 5th Int. Cryo engineering conf., Kyoto, 1974.

  9. R.L. Streever and L.H. Bennett, Phys. Rev. 131 (1963) 2000.

    Google Scholar 

  10. E.O. Wollan, J.W. Cable and W.C. Koehler, J. Phys. Chem. Solids 24 (1963) 1141.

    Google Scholar 

  11. A. Combette, Proc. Int. Meeting on hydrogen in metals, Julich, 1972, p. 821.

  12. G.H. Vineyard, J. Phys. Chem. Solids 3 (1957) 121.

    Google Scholar 

  13. C.P. Flynn and A.M. Stoneham, Phys. Rev. B1 (1970) 3966.

    Google Scholar 

  14. Y. Ebisuzaki, W.J. Kass and M. O'Keeffe, J. Chem. Phys. 46 (1967) 1373.

    Google Scholar 

  15. H.A. Mook, Phys. Rev. 148 (1966) 495.

    Google Scholar 

  16. M.B. Stearns, Phys. Lett. A47 (1974) 397; Phys. Rev. B9, (1973) 4383; B4 (1971) 4081.

    Google Scholar 

  17. K. Yoshida, Phys. Rev. 106 (1957) 893.

    Google Scholar 

  18. P.W. Anderson, Phys. Rev. 124 (1961) 41;

    Google Scholar 

  19. T. Moriya, Prog. Theor. Phys. 33 (1965) 157.

    Google Scholar 

  20. K.J. Duff and T.P. Das, Phys. Rev. B3 (1971) 192; 2294;

    Google Scholar 

  21. J.W.D. Connolly, Phys. Rev. 159 (1967) 415.

    Google Scholar 

  22. R.M. Moon, AIP Conference Proc., Vol. 24, ed. C.D. Graham, Jr., G.H. Lander and J.J. Rhyne (American Institute of Physics, New York) p. 425.

  23. J.W. Cable, E.O. Wollan, G.P. Felcher, T.O. Brun and S.P. Hornfeldt, Phys. Rev. Lett. 34 (1975) 278.

    Google Scholar 

  24. K. Nagamine, N. Nishida, S. Nagamiya, O. Hashimoto and T. Yamazaki, to be published.

  25. W.C. Phillips, Phys. Rev. A138, (1965) 1649.

    Google Scholar 

  26. G. Caglioti, M.J. Cooper, V.J. Minkiewicz and S.J. Pickart, J. Appl. Phys. 38 (1967) 1245.

    Google Scholar 

  27. E.I. Kondorskii and V.L. Sedov, JETP(Sov. Phys.) 11 (1960) 561.

    Google Scholar 

  28. G.B. Benedek and J. Armstrong, Suppl. J. App. Phys. 32 (1961) 106.

    Google Scholar 

  29. V. Jaccarino, L.R. Walker and G.K. Wertheim, Phys. Rev. Lett. 13 (1964) 752.

    Google Scholar 

  30. D.A. Shirley, S.S. Rosenblum and E. Matthias, Phys. Rev. 170 (1968) 363.

    Google Scholar 

  31. J.G. Dash, B.D. Dunlap and D.G. Howard, Phys. Rev. 141 (1966) 376.

    Google Scholar 

  32. L.H. Bennett, J. Appl. Phys. 36 (1965) 942.

    Google Scholar 

  33. H. Callen, D. Hone and A. Heeger, Phys. Lett. 17 (1965) 233.

    Google Scholar 

  34. T. Wolfram and W. Hall, Phys. Rev. 143 (1966) 284.

    Google Scholar 

  35. D. Hone, H. Callen and L.R. Walker, Phys. Rev. 144 (1966) 283.

    Google Scholar 

  36. S. Nagamiya, K. Nagamine, O. Hashimoto and T. Yamazaki, Phys. Rev. Lett. 35 (1975) 308.

    Google Scholar 

  37. J. Friedel, Ber. Buns. Gesellschaft 76 (1972) 828.

    Google Scholar 

  38. T. Oonoh and J. Itoh, J. Phys. Soc. Japan 27 (1969) 1359.

    Google Scholar 

  39. I. Vincze and L. Cser, Phys. Stat. Sol. (b) 49 (1972) K99.

    Google Scholar 

  40. A.T. Aldred, Phys. Rev. B11 (1975) 2597.

    Google Scholar 

  41. G.B. Benedek, Magnetic resonance at high pressure (Interscience, New York, 1963).

    Google Scholar 

  42. L.D. Khoi, P. Veillet and I.A. Campbell, J. of Phys. F5 (1975) 2184.

    Google Scholar 

  43. H. Hamagaki, K. Nakai, Y. Nojiri, I. Tanihata and K. Sugimoto, Hyperfine Interactions, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation, Japan Society for Promotion of Science and U.S.E.R.D.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamine, K., Nagamiya, S., Hashimoto, O. et al. Temperature-independent hyperfine field on μ+ in nickel in the temperature range of 0.12–300 K. Hyperfine Interact 1, 517–532 (1975). https://doi.org/10.1007/BF01022481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022481

Keywords

Navigation