Advertisement

Hyperfine Interactions

, Volume 1, Issue 1, pp 93–112 | Cite as

Covalency effects on implanted119Sn in group IV semiconductors studied by Mössbauer and channeling experiments

  • G. Weyer
  • A. Nylandsted-Larsen
  • B. I. Deutch
  • J. U. Andersen
  • E. Antoncik
Article

Abstract

Radioactive119mSn has been implanted with an isotope separator in single crystals of germanium, silicon, and diamond. Implantations of low doses (∼1013 atoms/cm2) at room temperature were performed as well as of higher doses at temperatures of about 400°C. The Mössbauer spectra of these sources show mainly one line. This line originates from119mSn on substitutional lattice sites as determined from channeling experiments with 2 MeV He+ ions on the same samples. The observed systematics of the isomer shifts for119Sn is explained on the basis of the average electronic configuration ns Z snp Z p characterizing chemical bonding in the host crystals. The Debye-Waller factors measured at room temperature are compared to values calculated in a high temperature approximation which accounts for impurity-host mass difference.

Keywords

Silicon Thin Film Germanium Chemical Bonding Lattice Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.W. Mayer, L. Eriksson and J.A. Davies, Ion implantation in semiconductors (Academic Press, New York and London, 1970).Google Scholar
  2. [2]
    Hyperfine interactions in excited nuclei, eds. G. Goldring and R. Kalish (Gordon and Breach, New York, 1971).Google Scholar
  3. [3]
    G.L. Latshaw, Ph.D. Thesis, Stanford University, 1971 (unpublished).Google Scholar
  4. [4]
    D.W. Hafemeister and H. de Waard, Phys. Rev. B7 (1973) 3014 and in Mössbauer effect methodology, eds. I.J. Gruverman and C.W. Seidel 8 (1973) 151.Google Scholar
  5. [5]
    F. de S. Barros, D. Hafemeister and P.J. Viccaro, J. Chem. Phys. 52 (1970) 2865.Google Scholar
  6. [6]
    J.A. Sawicki, B.D. Sawicka, S. Lazarski and E. Maydell-Ondrusz, Phys. Stat. Sol. 57 (1973) K 143.Google Scholar
  7. [7]
    G. Weyer, B.I. Deutch, A. Nylandsted-Larsen, J.U. Andersen and H. Loft-Nielsen, Proc. Int. Conf. on the applications of the Mössbauer effect, Bendor 1974, J. Phys. (Paris) 12 (1974) C6-297.Google Scholar
  8. [8]
    G. Weyer, B.I. Deutch, A. Nylandsted-Larsen and J.U. Andersen, Meeting on radiation damage and hyperfine interactions, Dieppe 1974, summary report by H. Bernas in Proc. Int. Conf. on hyperfine interactions studied in nuclear reactions and decay, Uppsala 1974, to be published.Google Scholar
  9. [9]
    G. Weyer, B.I. Deutch, A. Nylandsted-Larsen and J.U. Andersen, Proc. Int. Conf. on hyperfine interactions studied in nuclear reactions and decay, Uppsala 1974, to be published.Google Scholar
  10. [10]
    Description of Mössbauer drive unit, type 516S and of mechanical motion system, Manual, Natuurkundig Laboratorium, R.U., Groningen (1971).Google Scholar
  11. [11]
    J. Christiansen, P. Hindenach, U. Morfeld, E. Recknagel, D. Riegel and G. Weyer, Nucl. Phys. A99 (1967) 345.Google Scholar
  12. [12]
    G. Weyer, to be published.Google Scholar
  13. [13]
    G. Weyer, J.U. Andersen, B.I. Deutch, J.A. Golovchenko and A. Nylandsted-Larsen, Rad. Effects 24 (1975) 117.Google Scholar
  14. [14]
    G. Lang, Nucl. Instr. 24 (1963) 425.Google Scholar
  15. [15]
    W. Müller, H. Winkler and E. Gerdau, Proc. Int. Conf. on the applications of the Mössbauer effect, Bendor, 1974, J. Phys. (Paris) 12 (1974) C6-375.Google Scholar
  16. [16]
    W. Müller, E. Gerdau and H. Winkler, private communication.Google Scholar
  17. [17]
    G. Hembree and D.C. Price, Nucl. Instr. 108 (1973) 99.Google Scholar
  18. [18]
    A. Baldereschi and J.J. Hopfield, Phys. Rev. Letters 28 (1972) 171.Google Scholar
  19. [19]
    E. Antoncik, Proc. Int. Conf. on lattice defects in semiconductors, Freiburg 1974, to be published.Google Scholar
  20. [20]
    E. Antoncik, Phys. Stat. Sol., to be published.Google Scholar
  21. [21]
    E. Antoncik, Electrons in crystalline solids (IAEA, Vienna, 1973) p. 461.Google Scholar
  22. [22]
    J.P. Walter and M.L. Cohen, Phys. Rev. B4 (1971) 1877.Google Scholar
  23. [23]
    P.G. Dawber and R.J. Elliot, Proc. Roy. Soc. A273 (1963) 222.Google Scholar
  24. [24]
    A. Grimm, Proc. Int. Conf. on lattice defects in semiconductors, Freiburg 1974, to be published.Google Scholar
  25. [25]
    Yu. Kagan and Ya.A. Iosilevskii, JETP (Sov. Phys.) 15 (1962) 182; 17 (1963) 195.Google Scholar
  26. [26]
    A.A. Maradudin and P.A. Flinn, Phys. Rev. 126 (1962) 2059; A.A. Maradudin, in Solid State Phys., eds. F. Seitz and D. Turnbull 18 (1966) 273.Google Scholar
  27. [27]
    W.M. Visscher, Phys. Rev. 129 (1963) 28.Google Scholar
  28. [28]
    G.W. Lehmann and R.E. de Wames, Phys. Rev. 131 (1963) 1008.Google Scholar
  29. [29]
    P.D. Mannheim, Phys. Rev. 165 (1968) 1011.Google Scholar
  30. [30]
    G. Dolling and R.A. Cowley, Proc. Phys. Soc. 88 (1966) 463.Google Scholar
  31. [31]
    V.A. Golovnin, S.M. Irkaev and R.N. Kuznin, JETP (Sov. Phys.) 32 (1971) 372.Google Scholar
  32. [32]
    B.H. Zimmermann, H. Jena, G. Ischenko, H. Kilian and D. Seyboth, Phys. Stat. Sol. 27 (1968) 639.Google Scholar
  33. [33]
    A.A. Maradudin, P.A. Flinn and S. Ruby, Phys. Rev. 126 (1962) 9.Google Scholar
  34. [34]
    M. Schulz, Appl. Phys. 4 (1974) 91 and 225.Google Scholar

Copyright information

© North-Holland Publishing Company 1975

Authors and Affiliations

  • G. Weyer
    • 1
  • A. Nylandsted-Larsen
    • 1
  • B. I. Deutch
    • 1
  • J. U. Andersen
    • 1
  • E. Antoncik
    • 1
  1. 1.Institute of PhysicsUniversity of AarhusAarhus CDenmark

Personalised recommendations