Biotechnology Letters

, Volume 12, Issue 2, pp 139–144 | Cite as

Large-scale production of bacterial biomass from methanol for use as milk-replacer

  • A. S. Abu-Ruwaida
  • I. M. Banat
  • I. Y. Hamdan


A mixed methanol-utilizing bacterial culture was utilized to produce bacterial biomass as milk replacer. This culture comprised three pure strains: KISRI-5 (NCIB 12135), KISRI-512 (NCIB 12137) and KISRI-5112 (NCIB 12138). Optimal concentrations of methanol (15 g 1−1) and medium elements as well as optimal growth conditions, e.g., pH (6.8), temperature (38°C), dissolved oxygen and dilution rate, were established. The maximum biomass yield coefficient obtained under optimized conditions was 0.48 g g−1.· Large-scale production was successfully carried out in a 1500 1 fermenter under chemostat conditions. A good product was obtained having high true protein content (59–62%) and low polysaccharides (5%) without microbial contamination.


Biomass Polysaccharide Dissolve Oxygen Optimal Growth Dilution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Ruwaida, A.; I. Banat and I. Hamdan. 1989. Appl. Microbiol. Biotechnol. (in press).Google Scholar
  2. AOAC. 1984. Official Methods of Analysis. Association of Official Analytical Chemists. Washington, D.C., U.S.A.Google Scholar
  3. Banat, I. M., N. Al-Awadhi, and I. Y. Hamdan 1989.MIRCEN J. 5:149–159.Google Scholar
  4. Drozd, J. W., and J. D. Linton. 1981. InContinuous Culture of Cells. Edited by P. H. Calcott, CRC Press, Fla: Boca Raton, pp. 113–114.Google Scholar
  5. ElNawawy, A.; I. Banat; E. El-Rayes; and I. Hamdan. 1989. J. Basic Microbiol. (in press).Google Scholar
  6. Faust, U., P. Prave, and D. A. Sukatsch. 1977.J. Ferm. Technol. 55:609.Google Scholar
  7. Goldberg, I. 1980. InAdvances in Biotechnol., 2. Edited by M. Moo-Young, New York: Pergammon Press, pp. 419–424.Google Scholar
  8. Goldberg, I., and Z. Er-el. 1981.Process Biochem.,16:2–8.Google Scholar
  9. Faust, U., P. Prave, and D. A. Sukatsch. 1977.J. Ferm. Technol. 55:609.Google Scholar
  10. Gow, J. S.; J. D. Littehailes; S. R. L. Smith; and F. B. Walter. 1976. InSingle Cell Protein, II. Edited by S. R. Tannenbaum and D. J. C. Wang. Cambridge, Mass.: Masschusetts Institute of Technology, p. 370.Google Scholar
  11. Haggstrom, L. 1977.Appl. Environ. Microbiol. 33:567–576.Google Scholar
  12. Hamdan, I.; H. Asthana; N. Al-Awadhi; A. El-Nawawy; I. Banat; and A. Salman. 1986.In Perspectives in Biotechnol. and Appl. Microbiol. Edited by D. I. Alani and M. Moo-Young. London: Elsevier Applied Science Publishers, pp. 49–60.Google Scholar
  13. Hamdan, I.; M. Razzaque; A. Abu-Ruwaida; M. Ibnoaf; M. Husseini; and I. Banat. 1988. Kuwait Institute for Scientific Research,Report No. KISR2664, Kuwait.Google Scholar
  14. Herbert, D., P. J. Phipps and R. E. Strange. 1971. InMethods in Microbiology, Vol. 5 B. Edited by J. R. Norris and D. W. Ribbons, London: Academic Press, pp. 210–336.Google Scholar
  15. Hinks, C. E. 1978. J. Food Sci. and Agric.29:99–106.Google Scholar
  16. ICMSF. 1978. Microorganisms in foods. Recommendations of the ICMSF of the International Association of Microbiological Societies. ICMSF, Toronto, Canada.Google Scholar
  17. IUPAC. 1974. Proposed guidelines for testing single-cell protein destined as a major protein source for animal feed. International Union of Pure and Applied Chemistry.Technical Report No. 12, New York.Google Scholar
  18. Kawase, Y., and M. Moo-Young. 1989. J. Chem. Tech. Biotechnol.44:63–75.Google Scholar
  19. Lallai, A.; G. Mura; R. Miliddi; C. Mastinu. 1988.Biotechnol. Bioeng. 31: 130–134.Google Scholar
  20. Litchfield, J. H. 1979. In Peppler, H. J.; Perlman, D. (eds.) Microbial Technol., Microbial Processes, 1, Acad. Press, New York, pp. 93–155.Google Scholar
  21. Lloyd, D. R. 1983. The nutritional evaluation of Pruteen.In Proc., Int. Symp. on SCP from Hydrocarbons for Animal Feeding. Edited by I. Y. Hamdan. Kuwait: Kuwait Institute for Scientific Research, pp. 159–175.Google Scholar
  22. Mateles, R. I., and E. Battat. 1974.Appl. Microbiol. 28:901–905.Google Scholar
  23. Moo-Young, M. 1976.Process Biochem. December, p. 32–34.Google Scholar
  24. Prokop, A.; H. Ratcliffe; M. Fatayer, N. Al-Awadht; A. Khamis; M. Murad; C. Bond; and I. Hamdan. 1984. Biotechnology Bioeng.26:1085–1089.Google Scholar
  25. Sinkeldam, E.; V. Hollanders, and R. Woutersen. 1986. Netherlands Organization for Applied Scientific Research,Report No. V 86 276/2551153, Rotterdam.Google Scholar
  26. Toullec, R. M., M. Theriez, and P. Thivend. 1980.World Animal Review 33:32–42.Google Scholar
  27. Van Weerden, E.; and J. Huisman. 1977.Animal Feed Sci. and Technol. 2:377–383.Google Scholar
  28. Waldroup, P. W. 1981. InNew Protein Foods, 4: Animal Protein Supplies. Edited by Altschtul, A. M. and Wilke, H. L. Acad. Press, New York, pp. 205–252.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. S. Abu-Ruwaida
    • 1
  • I. M. Banat
    • 1
  • I. Y. Hamdan
    • 1
  1. 1.Kuwait Institute for Scientific ResearchSafatKuwait

Personalised recommendations