Transition Metal Chemistry

, Volume 12, Issue 2, pp 121–125 | Cite as

Kinetics of oxidation ofcis-, andtrans-chlorobis(ethylenediamine)isothiocyanatocobalt(III)ion with peroxodisulphate in aqueous alcoholic mixtures

  • Vladislav Holba
  • Olga Grančičová
  • Alena Paulenová
Full Papers


The effect of organic cosolvent on the rate constants and activation parameters of oxidation of coordinativelybound thiocyanate with peroxodisulphate was investigated in mixtures of water with methanol,i-propanol andt-butanol. The thermodynamic transfer functions, corresponding to the transfer of reactants and activated complex from water to the solvent mixtures were evaluated from kinetic measurements and from the solubilities of corresponding salts. The experimental results are interpreted in terms of the solvation of both the initial state and the activated complex.


Oxidation Physical Chemistry Inorganic Chemistry Catalysis Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. R. Norris and D. Patterson,J. Inorg. Nucl. Chem.,31, 3680 (1969).Google Scholar
  2. (2).
    S. M. Caldwell and A. R. Norris,Inorg. Chem.,7, 1667 (1968).Google Scholar
  3. (3).
    K. Schug, B. Miniatas, A. J. Sadowski, T. Yano and K. Ueno,Inorg. Chem.,7, 1969 (1968).Google Scholar
  4. (4).
    V. Holba and M. Talapka,Coll. Czech. Chem. Comm.,42, 2627 (1977).Google Scholar
  5. (5).
    V. Holba, V. Harčárová and M. Tarnovská,Chem. Zvesti,37, 721 (1983).Google Scholar
  6. (6).
    V. Holba, J. Benko, O. Grančičová and O. Vollárová,Transition Met. Chem.,10, 84 (1985).Google Scholar
  7. (7).
    G. Nejedlíková,Thesis. Comenius University, Bratislava, 1985.Google Scholar
  8. (8).
    M. J. Blandamer and J. Burgess,Coord. Chem. Rev.,31, 93 (1980).Google Scholar
  9. (9).
    J. Pointud, J. Juillard, J. P. Morel and L. Avedikian,Electrochim. Acta,19, 229 (1974).Google Scholar
  10. (10).
    C. F. Wells,J. Chem. Soc. Faraday Trans. I,72, 601 (1976).Google Scholar
  11. (11).
    J. Juillard and C. Tissier,Electrochim. Acta,27, 123 (1982).Google Scholar
  12. (12).
    C. N. Elgy and C. F. Wells,J. Chem. Soc., Faraday Trans. I,79, 2367 (1983).Google Scholar
  13. (13).
    M. J. Blandamer, J. Burgess, P. J. Hamshere, C. White, R. J. Haines and A. McAuley,Can. J. Chem.,61, 1361 (1983).Google Scholar
  14. (14).
    M. H. Abraham, T. Hill, H. C. Ling, R.A. Schulz and R. A. C. Watt,J. Chem. Soc., Faraday Trans. I.,80, 489 (1984).Google Scholar
  15. (15).
    C. Reichardt,Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim, 1979, p. 78.Google Scholar
  16. (16).
    S. Villermaux and J. J. Delpuech,Bull. Soc. Chim. Fr., 2534 (1974).Google Scholar
  17. (17).
    P. J. La Brocca, R. Phillips, S. S. Goldberg and O. Popovych,J. Chem. Eng. Data,24, 215 (1979).Google Scholar
  18. (18).
    C. Tissier,Comptes Rend. Acad Sci. Ser. C.,286, 35 (1978).Google Scholar
  19. (19).
    H. L. Friedman and C. V. Krishnan, in F. Franks (Ed.)Water. A comprehensive Treatise, Vol. 3, p. 1 Plenum Press, New York 1973.Google Scholar
  20. (20).
    G. A. Krestov,Termodinamika Ionnykh Processov v Rastvarakh, p. 132, Chimija, Leningrad 1984.Google Scholar
  21. (21).
    Y. Marcus,J. Chem. Soc., Faraday Trans. I,82, 233 (1986).Google Scholar
  22. (22).
    J. B. Hasted, D. M. Ritson and C. H. Collie,J. Chem. Phys.,16, 1 (1948).Google Scholar
  23. (23).
    R. Alexander, E. C. F. Ko, A. J. Parker, and T. J. Broxton,J. Am. Chem. Soc.,90, 5049 (1968).Google Scholar
  24. (24).
    M. H. Abraham and M. K. Abraham,Progr. Phys. Org. Chem.,11, 2 (1974).Google Scholar
  25. (25).
    V. A. Gorodyskii,Kinetics and Catal,17, 1166 (1976).Google Scholar
  26. (26).
    J. Bertrán and F. Sánchez Burgos,J. Chem. Educ.,61, 416 (1984).Google Scholar
  27. (27).
    R. A. Marcus,J. Chem. Phys.,24, 966 (1956).Google Scholar
  28. (28).
    J. O. Edwards,Inorganic Reaction Mechanisms, p. 74 W.A. Benjamin, New York 1964.Google Scholar
  29. (29).
    D. L. Herting, C. P. Sloan, A. W. Cabral and J. H. Krueger,Inorg. Chem.,17, 1649 (1978).Google Scholar
  30. (30).
    O. Exner,Coll. Czech. Chem. Comm.,29, 1094 (1964).Google Scholar
  31. (31).
    R. Lumry and S. Rajender,Biopolymers,9, 1125 (1970).Google Scholar
  32. (32).
    J. Benko, O. Vollárová, O. Grančičová and V. Holba,J. Coord. Chem.,14, 175 (1985).Google Scholar
  33. (33).
    V. Holba and O. Vollárová,Coll. Czech. Comm.,44, 3588 (1979).Google Scholar
  34. (34).
    O. Vollárová and V. Holba,Coll. Czech. Chem. Comm.,41, 1898 (1978).Google Scholar
  35. (35).
    O. Vollárová and V. Holba,Coll. Czech. Chem. Comm.,44, 1052 (1979).Google Scholar
  36. (36).
    J. Belej and J. Vondrák,Coll. Czech. Chem. Comm.,26, 1251 (1961).Google Scholar
  37. (37).
    A. Werner,Liebigs Ann. Chem.,386, 1 (1912).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Vladislav Holba
    • 1
  • Olga Grančičová
    • 1
  • Alena Paulenová
    • 1
  1. 1.Department of Physical Chemistry, Faculty of ScienceComenius UniversityBratislavaCzechoslovakia

Personalised recommendations