Advertisement

Biotechnology Letters

, Volume 14, Issue 4, pp 263–268 | Cite as

Displacement of the equilibrium in lipase catalysed transesterification in ethyl octanoate by continous evaporation of ethanol

  • Niklas Öhrner
  • Mats Martinelle
  • Anders Mattson
  • Torbjörn Norin
  • Karl Hult
Article

Summary

A simple method to overcome low equilibrium conversion in lipase catalysed resolution of alcohols by transesterification was developed. Ethyl octanoate was used as acyl donor as well as solvent and the reaction equilibrium was shifted by applying reduced pressure, forcing the co-product ethanol to evaporate during the reaction. Using a lipase fromCandida antarctica 2-octanol, 1-phenyl ethanol, 1-cyclohexyl ethanol andtrans-2-methylcyclohexanol were resolved in good optical and chemical yields.

Keywords

Lipase Transesterification Octanoate Reaction Equilibrium Chemical Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelhorst, K., Björkling, F., Godtfredsen, S.E. and Kirk, O. (1990).Synthesis,2, 112–115.Google Scholar
  2. Berger, B. and Faber, K. (1991).J. Chem. Soc. Chem. Comm., 1198–1200.Google Scholar
  3. Bianchi, D., Cesti, P. and Battistel, E. (1988).J. Org. Chem.,53, 5531–5534.Google Scholar
  4. Brown, H.C., Cho, B.T. and Park, W.S. (1988).J. Org. Chem.,53, 1231–1238.Google Scholar
  5. Chen, C., Fujimoto, Y., Girdaukas, G. and Sih, C.J. (1982).J. Am. Chem. Soc.,104, 7294–7299.Google Scholar
  6. Chen, C., Wu, S., Girdaukas, G. and Sih, C.J. (1987).J. Am. Chem. Soc.,109, 2812–2817.Google Scholar
  7. Degueil-Castaing, M., de Jeso, B., Drouillard, S. and Maillard, B. (1987).Tetraheron Lett.,28, 935–954.Google Scholar
  8. Gerlach, D. and Schreier, P. (1989).Biocatalysis,2, 257–263.Google Scholar
  9. Hayashi, T., Matsumoto, Y. and Ito, Y. (1989).J. Am. Chem. Soc.,111, 3426–3428.Google Scholar
  10. Huffman, J.W. and Desai, R.C. (1983).Synthetic Comm.,13, 553–557.Google Scholar
  11. Janssen, A.J.M., Klunder, A.J.H. and Zwanenburg, B. (1991).Tetrahedron,47, 7645–7662.Google Scholar
  12. Kazalauskas, R.J., Wessfloch, A.N.E., Rappaport, A.T. and Cuccia, L.A. (1991).J. Org. Chem.,56, 2656–2665.Google Scholar
  13. Marquardt, D.W. (1963).J. Soc. Industr. Appl. Math.,11, 431–442.Google Scholar
  14. Mitsuda, S. and Nabeshima, S. (1991).Recl. Trav. Chim. Pays-Bas,110, 151–154.Google Scholar
  15. Sonnet, P.E. and Baillargeon, M.W. (1987).J. Chem. Ecol.,13, 1279–1292.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Niklas Öhrner
    • 1
  • Mats Martinelle
    • 1
  • Anders Mattson
    • 2
  • Torbjörn Norin
    • 2
  • Karl Hult
    • 1
  1. 1.Department of Biochemistry and BiotechnologyRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Organic ChemistryRoyal Institute of TechnologyStockholmSweden

Personalised recommendations