Skip to main content
Log in

The electrodeposition of chromium from chromium(III) solutions — a study using microelectrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Potential sweep and pulse experiments at a carbon microdisc electrode (radius 4 μm) have been used to investigate chromium plating from aqueous solutions of chromic ions containing sulphate or thiocyanate ions and buffered at pH 3.3. While chromium deposition occurs in many media, it is shown that the plating reaction is always in competition with other cathodic reactions including hydrogen evolution. This leads to loss in current effciency and, in some circumstances, to precipitation of chromic hydroxide on the cathode and, hence, contamination of the metal. In addition, it is demonstrated that the chromium(III) exists in solution as mixtures of complexes, not all of which are electroactive within the accessible potential range. Hence the investigation confirms that the quality of electroplates will vary strongly with the choice of medium. A commercial chromium(III) plating bath, Envirochrome, has also been studied and it is concluded that its properties are superior to simple sulphate or thiocyanate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Dennis and T. E. Such, ‘Nickel and Chromium Plating,’ Newnes-Butterworths, London (1972).

    Google Scholar 

  2. G. Dubpernell, The Electrodeposition of Chromium from Chromic Acid Solutions,’ Pergamon Press, Oxford (1977).

    Google Scholar 

  3. D. Pletcher, ‘Industrial Electrochemistry,’ Chapman and Hall, London, (1982).

    Google Scholar 

  4. D. J. Barclay and W. M. Morgan, U.S. Patent 4,141,803 (1979)Chem. Abs. 90 (1979) 159143.

    Google Scholar 

  5. D. J. Barclay and W. M. Morgan, Fr. Patent 2,294,250 (1976) and UK Patent 1,431,693 (1976),Chem. Abs. 86 (1977) 179540.

  6. D. J. Barclay and W. M. Morgan, DE. 2,723,943 (1978).Chem. Abs. 89 (1978) 137657.

    Google Scholar 

  7. D. J. Barclay and J. M. L. Vigar. DE. 2,943,049 (1980).Chem. Abs. 93 (1980) 33966.

    Google Scholar 

  8. D. J. Barlay and A. Edmund, UK Patent 1,583,105 (1981).Chem. Abs. 96 (1982) 43156.

    Google Scholar 

  9. D. J. Barclay and W. M. Morgan, UK. Patent 1,582,711 (1981),Chem. Abs. 96 (1982) 43155.

    Google Scholar 

  10. N. Deeman European Patent 58,044 (1982).Chem. Abs. 97 (1982) 225668.

    Google Scholar 

  11. D. J. Barclay and J. M. L. Vigar, DE, 2,930,981 (1980).Chem. Abs. 93 (1980) 56949.

    Google Scholar 

  12. D. J. Barclay and J. M. L. Vigar, European Patent 35,667.Chem. Abs. 95 (1981) 194465.

    Google Scholar 

  13. D. J. Barclay, W. M. Morgan and J. M. L. Vigar, European Patent 79,770.Chem. Abs. 99 (1983) 45451.

    Google Scholar 

  14. D. J. Barclay, W. M. Morgan and J. M. L. Vigar European Patent 79,768.Chem. Abs. 99 (1983) 45452.

    Google Scholar 

  15. D. J. Barclay, W. M. Morgan and J. M. L. Vigar, European Patent 79, 771.Chem. Abs. 99 (1983) 60933.

    Google Scholar 

  16. D. J. Barclay, W. M. Morgan and J. M. L. Vigar, European Patent 79, 769.Chem. Abs. 99 (1983) 60932.

    Google Scholar 

  17. D. J. Barclay and W. M. Morgan, Belgium Patent 867,069 (1978)Chem. Abs. 90 (1979) 31148.

    Google Scholar 

  18. D. J. Barclay, N. Deeman, T. E. Such and J. M. L. Vigar,Proc. Interfinish 80, (1980) p. 79.

    Google Scholar 

  19. J. Gyllenspetz and S. Renton, UK Patent 1,455,841. (1976)Chem. Abs. 86 (1977) 179536.

    Google Scholar 

  20. T. W. Tomaszewki, H. G. Creutz and R. J. Clauss, DE 2,912,354 (1979).Chem. Abs. 91 (1979) 201261.

    Google Scholar 

  21. T. Berzins, US Patent 3,021,267 (1962).Chem. Abs. 56 (1962) 98941.

    Google Scholar 

  22. J. J. B. Ward and C. Barnes DE 2,612,443 (1976).Chem. Abs. 86 (1977) 23564 and DE 2,612,444 (1976).Chem. Abs. 86 (1977) 23565.

    Google Scholar 

  23. I. Tsuda, N. Kasahara and M. Kobayashi, Japan Patent 77,125,427 (1977).Chem. Abs. 88 (1978) 81106.

    Google Scholar 

  24. J. E. Bride, US Patent 3,706,638.Chem. Abs. 78 (1973) 79046.

    Google Scholar 

  25. D. Smart, T. E. Such and S. J. Wako,Trans. Inst. Met. Finishing 61 (1983) 105.

    Google Scholar 

  26. J. C. Crowther and S. Renton,Electroplat. Met. Finishing 28 (1975) 6 May.

  27. L. Gianelos,Plating Surf. Finishing 63 (1982) 30 March.

  28. ‘The Canning Handbook-Surface Finishing Technology’, 24th edn. E & F. N. Spon, London (1986).

  29. W. Cannings Materials Ltd, Technical Details Data Sheet ‘Envirochrome Decorative Trivalent Chromium Plating Process’.

  30. D. J. Barclay, E. Passeron and F. C. Anson,Inorg. Chem. 9 (1970) 1024.

    Google Scholar 

  31. M. J. Weaver,Israel J. Chem. 18 (1979) 35.

    Google Scholar 

  32. J. P. Hoare, Proc. 72nd Conf. Am. Electroplaters Soc. (1985).

  33. H. Gerischer and M. Käppel,Z. Electrochem. 61 (1957) 463;64 (1960) 235.

    Google Scholar 

  34. H. Gerischer and M. Käppel,Z. Phys. Chem. 30 (1959) 83.

    Google Scholar 

  35. J. P. Hoare,J. Electrochem. Soc. 126 (1979) 190.

    Google Scholar 

  36. L.-C. Jiang and D. Pletcher,J. Applied Electrochem. 13 (1983) 235, 245.

    Google Scholar 

  37. M. Fleischmann, S. Pons, D. R. Rolison and P. Schmidt, ‘Ultramicroelectrodes’, Datatech Systems, Morganton (1987).

  38. J. D. Genders, W. M. Hedges and D. Pletcher,J. Chem. Soc. Faraday Trans. I 80 (1984) 3399.

    Google Scholar 

  39. W. M. Hedges and D. Pletcher,J. Chem. Soc. Faraday Trans. I 82 (1986) 179.

    Google Scholar 

  40. J. D. Genders and D. Pletcher,J. Electroanal. Chem. 199 (1986) 93.

    Google Scholar 

  41. J. N. Howarth and D. Pletcher,J. Chem. Soc. Faraday Trans. I 83 (1987) 2787, 2797.

    Google Scholar 

  42. A. J. Bard, R. Parsons and J. Jordan (editors) ‘Standard Potentials in Aqueous Solutions’, Marcel Dekker, New York (1985).

    Google Scholar 

  43. S. Haupt and H. H. Strehblow,J. Electroanal. Chem. 228 (1987) 365.

    Google Scholar 

  44. W. Vielstich and D. Jahn,Z. Elektrochem. 64 (1960) 43.

    Google Scholar 

  45. G. J. Hills and F. Silva,J. Electroanal. Chem. 137 (1982) 392.

    Google Scholar 

  46. M. Jurkiewicz-Herbich and J. Jastrzebska,J. Electroanal. Chem. 199 (1986) 201.

    Google Scholar 

  47. M. Fleischmann, I. R. Hill and G. Sundholm,J. Electroanal. Chem. 157 (1983) 359.

    Google Scholar 

  48. G. Horanyi and E. M. Rizmayer,J. Electroanal. Chem. 149 (1983) 221.

    Google Scholar 

  49. A. Baranski and Z. Galus,J. Electroanal. Chem. 75 (1977) 613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, J.N., Pletcher, D. The electrodeposition of chromium from chromium(III) solutions — a study using microelectrodes. J Appl Electrochem 18, 644–652 (1988). https://doi.org/10.1007/BF01022264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022264

Keywords

Navigation