Journal of Applied Electrochemistry

, Volume 18, Issue 4, pp 595–600 | Cite as

Studies on the microstructure of the positive lead-acid battery plate and its electrochemical reactivity

  • Joji Yamashita
  • Yuji Matsumaru


It has been shown that the physicochemical properties of PbO2 in the positive plate of a lead-acid battery relates to the PbO2 crystal size growth during charge/discharge cycling. It was found that there were two types of PbO2 present in an uncycled positive plate thermally decomposed into tet-PbO: One with, and the other without, forming β-PbO x . The degree of crystallinity was found to be lower in the surface layer of PbO2 crystals than in the interior. The degree of crystallinity of PbO2 crystals increased with cycling, and at the same time the size of PbO2 crystals became larger, causing decrease in the specific surface area and surface roughness. It was also concluded that the electrochemical reactivity of the surface layer of PbO2 was strongly influenced by the properties of the PbO2 crystal lattice characterized by the formula PbO2-δ(xH2O).


Microstructure Physical Chemistry Surface Roughness Surface Layer Specific Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. M. Caulder, J. S. Murday and A. C. Simon,J. Electrochem. Soc. 120, (1973) 1515.Google Scholar
  2. [2]
    S. M. Caulder and A. C. Simon, J. Electrochem. Soc.121 (1974) 531.Google Scholar
  3. [3]
    A. C. Simon and S. M. Caulder, J. Electrochem. Soc.121 (1974) 1546.Google Scholar
  4. [4]
    A. C. Simon and S. M. Caulder,Power Sources 5 (1975) 109.Google Scholar
  5. [5]
    D. C. Constable, J. Gardner, J. A. Hamilton, K. Harris, R. J. Hill, D. A. Rand, S. Swan and L. B. Zalcman, ILZRO Project LE-290 Progress Report No. 6 (1982).Google Scholar
  6. [6]
    A. C. Simon, P. D'Antonio and S. M. Caulder,J. Electrochem. Soc. 130 (1983) 1451.Google Scholar
  7. [7]
    P. T. Moseley, J. L. Hutchison and M. A. M. Bourke J. Electrochem. Soc.129 (1982) 876.Google Scholar
  8. [8]
    J. D. Jorgensen, R. Varma, F. T. Rotella, G. Cook and N. P. Yao, DOE (USA) Conf-820508-10 (1983).Google Scholar
  9. [9]
    R. J. Hill,Mat. Res. Bull. 17 (1982) 769.Google Scholar
  10. [10]
    R. J. Hill,J. Power Sources 11 (1984) 19.Google Scholar
  11. [11]
    K. Harris, R. J. Hill and D. A. J. Rand,J. Electrochem. Soc. 131 (1984) 474.Google Scholar
  12. [12]
    R. J. Hill and I. C. Madsen, J. Electrochem. Soc.131 (1984) 1486.Google Scholar
  13. [13]
    R. J. Hill and M. R. Houchin,Electrochim. Acta 30 (1985) 559.Google Scholar
  14. [14]
    R. J. Hill, A. M. Jessel and I. C. Madsen, in ‘Symposium on Advances in Lead-Acid Batteries’ (edited by R. Bullock and D. Pavlov). New Orleans 8–11 October (1984), Electrochemical Society, NY, Proc. Vol. 81-14, pp. 59–77.Google Scholar
  15. [15]
    D. Pavlov, E. Bashtavelova, V. Manev and A. Nasalevska,J. Power Sources 19 (1987) 15.Google Scholar
  16. [16]
    P. Faber,Electrochim. Acta 26 (1981) 1435.Google Scholar
  17. [17]
    M. I. Gillibrand and B. Halliwell,Power Sources 1 (1966) 176.Google Scholar
  18. [18]
    M. I. Gillibrand and B. Halliwell,J. Inorg. Nucl. Chem. 34 (1972) 1143.Google Scholar
  19. [19]
    D. Pavlov and E. Bashtavelova,J. Electrochem. Soc. 131 (1984) 1468.Google Scholar
  20. [20]
    J. P. Pohl and H. Rickert,Power Sources 5 (1974) 15.Google Scholar
  21. [21]
    J. P. Pohl and G. L. Schlectriemen,J. Appl. Electrochem. 14 (1984) 521.Google Scholar
  22. [22]
    J. P. Pohl and S. Atlung,Electrochim. Acta 31 (1986) 391.Google Scholar
  23. [23]
    J. P. Pohl and S. Atlung, Electrochim. Acta31 (1986) 873.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • Joji Yamashita
    • 1
  • Yuji Matsumaru
    • 1
  1. 1.Central LaboratoryYuasa Battery Co. Ltd, 6-6OsakaJapan

Personalised recommendations