Skip to main content
Log in

Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrooxidation of methanol was enhanced on PtSn-SPE, PtRu-SPE and PtIr-SPE in sulfuric acid solution, when compared with the activity of Pt-SPE, which has already been shown to have a higher activity than a Pt electrode. SPE is an abbreviation for Nafion, a solid polymer electrolyte. It is suggested that this dual enhancement of the oxidation rate for PtSn-SPE and PtRu-SPE catalysts is due to the modification of the oxidation state of Pt by Sn and Ru and to the presence of H2O and CH3OH, both modified by the SPE matrix. This modification appears to weaken their hydrogen bonds in solution. Both Pt and Ir have catalytic properties for methanol oxidation, but a PtIr-SPE catalyst showed a more enhanced catalytic activity than either of them. This will be discussed in terms of Ir, oxidized at relatively low positive potentials, assisting the redox process of Pt0/Pt2+ or Pt2+/Pt4+ in the SPE matrix, where CH3OH and H2O are present in modified forms. For comparison, IrPd-SPE was also used as an electrode and showed a higher activity than Ir alone, although Pd did not have any activity toward methanol oxidation in sulfuric acid solution. Irrespective of the kind of Pt-SPEs, the Tafel slope was approximately 120 mV; the CH3OH concentration dependence was of the order of 0.2–0.6. The pH dependence was nearly 0.5 against NHE. The activation energy of the Pt-SPEs for the reaction ranged between 20 and 33 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. W. Lu and S. Srinivasan,J. Appl. Electrochem. 9 (1979) 269.

    Google Scholar 

  2. R. S. Yeo,ACS Symp. Ser. 180 (1982) 453.

    Google Scholar 

  3. B. K. Kipling,ACS Symp. Ser. 180 (1982) 479.

    Google Scholar 

  4. I. Rubinstein and A. J. Bard,J. Am. Chem. Soc. 103 (1981) 5007.

    Google Scholar 

  5. N. Oyama, T. Simomura, K. Shigehara and F. C. Anson,J. Electroanal. Chem. 112 (1980) 271.

    Google Scholar 

  6. H. S. White, J. Leddy and A. J. Bard,J. Am. Chem. Soc. 104 (1982) 4811.

    Google Scholar 

  7. H. Nakajima, Y. Takabuwa, H. Kikuchi, K. Fujikawa and M. Kita,Electrochim. Acta. 32 (1987) 791.

    Google Scholar 

  8. K. A. Mauritz, C. J. Hora and A. J. Hopfinger,Advs. Chem. Ser. ACS 187 (1980) 123.

    Google Scholar 

  9. T. D. Gierke and W. Y. Hsu,ACS Symp. Ser. 180 (1982) 283.

    Google Scholar 

  10. In Ref. [9] the void cages are called clusters.

  11. M. Falk,Can. J. Chem. 58 (1980) 1495.

    Google Scholar 

  12. M. Falk,ACS Symp. Ser. 180 (1982) 139.

    Google Scholar 

  13. W. G. F. Grot, G. E. Munn and P. N. Walmsley,Extended Abstracts, 141st Meeting of Electrochem. Soc., Houston (1972).

  14. H. Takenaka and E. Torikai,Kokai Tokkyo Koho (Japan Patent)55 (1980) 38934.

    Google Scholar 

  15. V. S. Bagotzky and Yu. B. Vassiliev,Electrochim. Acta 12 (1967) 1323.

    Google Scholar 

  16. B. B. Damaskin, O. A. Petrii and V. V. Batrakov, ‘Adsorption of Organic Compounds on Electrodes’, Penum Press, New York (1971) Chaps 8 and 10.

    Google Scholar 

  17. M. W. Breiter,Electrochim. Acta 8 (1963) 973.

    Google Scholar 

  18. J. O'M. Bockris and H. Wroblowa,J. Electroanal. Chem. 7 (1964) 428.

    Google Scholar 

  19. K. J. Cathro,J. Electrochem. Soc. 116 (1969) 1608.

    Google Scholar 

  20. M. M. P. Janssen and J. Moolhuysen,Electrochim. Acta 21 (1976) 861, 869.

    Google Scholar 

  21. M. M. P. Janssen and J. Moolhuysen,J. Catalysis 46 (1977) 289.

    Google Scholar 

  22. A. Katayama,J. Phys. Chem. 84 (1980) 376.

    Google Scholar 

  23. A. Aramata and R. Ohnishi,J. Am. Chem. Soc. 105 (1983) 658.

    Google Scholar 

  24. A. Aramata and R. Ohnishi,J. Electroanal. Chem. 162 (1984) 153.

    Google Scholar 

  25. R. Woods,Israel J. Chem. 18 (1979) 118.

    Google Scholar 

  26. A. Aramata, T. Yamazaki, K. Kunimatsu and M. Enyo,J. Phys. Chem. 91 (1985) 2309.

    Google Scholar 

  27. L. Hilaire, G. D. Guerrero, P. Legare, G. Maire and G. Krill,Surf. Sci. 146 (1984) 569.

    Google Scholar 

  28. A. Aramata and I. Toyoshima,J. Electroanal. Chem. 135 (1982) 111.

    Google Scholar 

  29. H. Kita and A. Aramata, ‘Electrochemical Reactors’ (edited by M. Ismail), Elsevier, Amsterdam, Vol. 1, Chap. 3, in press.

  30. K. Ota, Y. Nakagawa and M. Takahashi,J. Electroanal. Chem. 179 (1984) 179.

    Google Scholar 

  31. S. Glasstone, K. J. Laidler and H. Eyring, ‘The Theory of Rate Processes’, McGraw-Hill, NY (1941) p. 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aramata, A., Kodera, T. & Masuda, M. Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion. J Appl Electrochem 18, 577–582 (1988). https://doi.org/10.1007/BF01022253

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022253

Keywords

Navigation