Journal of Statistical Physics

, Volume 25, Issue 2, pp 321–360 | Cite as

The incoherent scattering function and related correlation functions in hard sphere fluids at short times

  • I. M. de Schepper
  • M. H. Ernst
  • E. G. D. Cohen


For a classical fluid of hard spheres and hard disks exact expressions for all densities and wave vectors are derived for the coefficients oft n in the short-time expansion of the incoherent intermediate scattering function (n = 0, 1,..., 4) and the velocity correlation function (n=0,1,2). Similarly, we obtain the coefficient of the leading term in the short-time behavior of the cumulants of the displacements. Furthermore,S(k, ω) has a high-frequency tail ∼ω−4, characteristic for the hard-sphere fluid, which leads to a modification of the standard sum rules. We present estimates for the frequency range, in which this tail may be observed in neutron scattering off noble gases. The results are also compared with Enskog's theory and molecular dynamics calculations.

Key words

Incoherent scattering function velocity correlation function cumulants of displacement hard-sphere fluid short-time expansions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes,Physica 25: 825 (1959).Google Scholar
  2. 2.
    A. Rahman, K. S. Singwi, and A. Sjölander,Phys. Rev. 126: 986 (1962).Google Scholar
  3. 3.
    B. R. A. Nijboer and A. Rahman,Physica 32: 415 (1966).Google Scholar
  4. 4.
    D. Forster, P. C. Martin, and S. Yip,Phys. Rev. 170: 155, 160 (1968).Google Scholar
  5. 5.
    C. D. Andriesse,Physica 48: 61 (1970).Google Scholar
  6. 6.
    K. Sköld, J. M. Rowe, G. Ostrowski, and P. D. Randolph,Phys. Rev. A 6: 1107 (1972).Google Scholar
  7. 7.
    A. Rahman,Phys. Rev. A 9: 1667 (1974).Google Scholar
  8. 8.
    J. R. D. Copley and S. W. Lovesey,Rep. Progr. Phys. 38: 461 (1975).Google Scholar
  9. 9.
    S. Sjödin and A. Sjölander,Phys. Rev. A 18: 1723 (1978); L. Sjögren and A. Sjölander,J. Phys. C12: 4369 (1979).Google Scholar
  10. 10.
    H. C. Longuet-Higgins and J. A. Pople,J. Chem. Phys. 25: 884 (1956).Google Scholar
  11. 11.
    J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 188: 487 (1969).Google Scholar
  12. 12.
    P. Kleban,Phys. Rev. Lett. 27: 657 (1971).Google Scholar
  13. 13.
    V. F. Sears,Phys. Rev. A 5: 452 (1972).Google Scholar
  14. 14.
    J. Sykes,J. Stat. Phys. 8: 279 (1973).Google Scholar
  15. 15.
    H. H. U. Konijnendijk and J. M. J. van Leeuwen,Physica 64: 342 (1973), and Short time behavior of density correlation functions, doctoral thesis, University of Delft, the Netherlands, 1977.Google Scholar
  16. 16.
    P. Kleban,Physica 70: 105 (1973).Google Scholar
  17. 17.
    P. Kleban,J. Stat. Phys. 11: 317 (1974).Google Scholar
  18. 18.
    P. Résibois and J. L. Lebowitz,J. Stat. Phys. 12: 483 (1975).Google Scholar
  19. 19.
    P. Résibois,J. Stat. Phys. 13: 393 (1975).Google Scholar
  20. 20.
    P. M. Furtado, G. F. Mazenko, and S. Yip,Phys. Rev. A 14: 869 (1976).Google Scholar
  21. 21.
    P. Résibois and J. L. Lebowitz,J. Stat. Phys. 16: 395 (1977).Google Scholar
  22. 22.
    I. M. de Schepper and E. G. D. Cohen,Phys. Lett. 55A: 385 (1976);Phys. Lett. 56A: 499 (1976).Google Scholar
  23. 23.
    E. G. D. Cohen and I. M. de Schepper, inFundamental Problems in Statistical Mechanics IV, E. G. D. Cohen and W. Fiszdon, eds.,Zaklad Narodowy im. Ossolinskich, Publishers, Wroclaw, Poland (1978).Google Scholar
  24. 24.
    M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen,Physica (Utrecht) 45: 127 (1969).Google Scholar
  25. 25.
    H. van Beijeren and M. H. Ernst,J. Stat. Phys. 21: 125 (1979).Google Scholar
  26. 26.
    O. E. Lanford III, Time evolution of large classical systems, inDynamical Systems, Theory and Applications, J. Moser, ed., Lecture Notes in Physics No. 38 (Springer, Berlin, 1975).Google Scholar
  27. 27.
    H. van Beijeren, O. E. Lanford III, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 22: 237 (1980).Google Scholar
  28. 28.
    E. G. D. Cohen, inLectures in Theoretical Physics VIII A, W. E. Brittin, ed., (The University of Colorado Press, Boulder, Colorado, 1966); see also J. V. Sengers, D. T. Gillespie, and W. R. Hoegy,Phys. Lett. 32A: 387 (1970), and W. R. Hoegy and J. V. Sengers,Phys. Rev. A 2: 2461 (1970).Google Scholar
  29. 29.
    F. H. Ree, R. N. Keeler, and S. L. McCarthy,J. Chem. Phys. 44: 3407 (1966); F. H. Ree and W. G. Hoover,J. Chem. Phys. 46: 4181 (1967).Google Scholar
  30. 30.
    M. H. Ernst and E. G. D. Cohen,J. Stat. Phys. 25: 153 (1981).Google Scholar
  31. 31.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).Google Scholar
  32. 32.
    I. S. Gradshteyn and I. W. Ryzhik,Table of Integrals Series and Products (Academic, New York, 1965).Google Scholar
  33. 33.
    G. E. Uhlenbeck and G. W. Ford,Studies in Statistical Mechanics I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1964).Google Scholar
  34. 34.
    B. J. Alder,Phys. Rev. Lett. 12: 317 (1964).Google Scholar
  35. 35.
    A. Bellemans and J. Orban,Chem. Phys. Lett. 2: 253 (1968), and unpublished results.Google Scholar
  36. 36.
    Y. Uehara, Y.-T. Lee, T. Ree, and F. H. Ree,J. Chem. Phys. 70: 1884 (1979).Google Scholar
  37. 37.
    W. W. Wood and J. J. Erpenbeck, private communication.Google Scholar
  38. 38.
    B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53: 3812 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • I. M. de Schepper
    • 1
  • M. H. Ernst
    • 1
  • E. G. D. Cohen
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtTA UtrechtThe Netherlands
  2. 2.The Rockefeller UniversityNew York

Personalised recommendations