Skip to main content
Log in

Ceramic diaphragms for advanced alkaline water electrolysis

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Chemically stable and physically strong, but relatively expensive diaphragms with low electrical surface-specific resistance have been developed for alkaline water electrolysis intended to work at temperature around and above 120°C at increased current densities and yet reduced cell voltage. These diaphragms are made of a porous cermet produced from ceramic particles (group 2A titanates) and NiO by reductive sintering. Two versions of such cermets have been investigated: a nickel net-supported diaphragm and a diaphragm which is supported by two porous metal electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Imarisio and A. S. Strub (editors), ‘Hydrogen as an Energy Carrier’, Proc. 3rd Int. Seminar, Lyon, 25–27 May, D. Reidel (1983).

  2. J. Pottier, M. Avallet and M. Mousset, Caracterisation sur Boucle d'Essais d'un Diaphragme en Titanate de Calcium sur Grille de Nickel, report from Gaz de France, private communication (1986).

  3. L. Giuffre, G. Modica, E. Montoneri and E. Tempesti, ‘Synthesis and Development of Electrolytic Separators for the Electrolysis of Alkaline Water’, see [1] Proc. 3rd Int. Seminar, Lyon, 25–27 May, D. Reidel (1983), p. 320.

  4. L. Giuffre, G. Modica, S. Maffi, E. Montoneri and E. Tempesti,Int. J. Hydrogen Energy 5 (1986) 307.

    Google Scholar 

  5. H. Wendt and H. Hofmann, ‘Composite Diaphragms for Medium Temperature (120–160° C) Water Electrolysis’, see [1] Proc. 3rd Int. Seminar, Lyon, 25–27 May, D. Reidel (1983), p. 286.

  6. B. Roz, T. Nenner and M. Roux, ‘L'Autonome: an Advanced Automatic 30 kW, 110° C Electrolyzer’ see [1], Proc. 3rd Int. Seminar, Lyon, 25–27 May, D. Reidel (1983), p. 160.

  7. Patent EUR 83 106 3342 (1983).

  8. E. Ryshkewitch, ‘Oxide Ceramics’, Academic Press, London (1960).

    Google Scholar 

  9. J. Divisek, P. Malinowski, J. Mergel and H. Schmitz,Int. J. Hydrogen Energy 13 (1988) 141.

    Google Scholar 

  10. W. M. Vogel, K. J. Routsis and V. J. Kehrer,J. Chem. Eng. Data 12 (1967) 467.

    Google Scholar 

  11. M. B. Knaster and L. A. Appelbaum,Zh. Fiz. Khim. 38 (1964) 223.

    Google Scholar 

  12. W. M. Vogel and S. W. Schmith,J. Electroanal. Chem. 18 (1968) 215.

    Google Scholar 

  13. ‘Handbook of Chemistry and Physics’, CRC Press, Cleveland (1984).

  14. Alfa-Catalog, European Edition (1987).

  15. H. Wendt and H. Hofmann,Int. J. Hydrogen Energy 10 (1985) 375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendt, H., Hofmann, H. Ceramic diaphragms for advanced alkaline water electrolysis. J Appl Electrochem 19, 605–610 (1989). https://doi.org/10.1007/BF01022121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022121

Keywords

Navigation