Advertisement

Journal of Applied Electrochemistry

, Volume 26, Issue 5, pp 523–527 | Cite as

Anodic oxidation of dimethyl sulfoxide based electrolyte solutions: Anin situ FTIR study

  • P. Krtil
  • L. Kavan
  • I. Hoskovcová
  • K. Kratochvilová
Papers

Abstract

Anodic oxidation of dimethyl sulfoxide (DMSO) based electrolyte solutions, containing LiClO4, LiBF4 and KPF6, on platinum (Pt), glassy carbon (GC) andn-TiO2 (anatase), electrodes was studied usingin situ Fourier transform infrared spectroscopy (FTIR). All solutions contained small amounts of H2O. Regardless of the supporting electrolyte all systems were unstable at potentials above 1.0 V vs SCE. The major oxidation product is dimethyl sulfone, formation of which is initiated by the trace water breakdown. In contrast to acetonitrile based solutions there is no evidence of electrolyte involvement in the breakdown process. Photoanodic decomposition of dimethyl sulfoxide based solutions proceeds in the same way as the anodic oxidation in the dark. In the presence of nucleophilic agent (iodides) the prevailing redox process is iodide oxidation. Small amounts of, probably, methylsulfinyliodide are also formed. The irreversible consumption of charge mediator significantly restricts the possible practical use of DMSO in photoelectrochemical devices.

Keywords

Fourier Transform Infrared Spectroscopy Dimethyl Sulfoxide Glassy Carbon Anodic Oxidation Anin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Nagatomo, M. Mitsui, K. Matsutani and O. Omoto,Trans. Inst. Electron. Inf. Commun. Eng. E70, (1987) 346.Google Scholar
  2. [2]
    B. O'Regan and M. Grätzel,Nature,353 (1991) 737.Google Scholar
  3. [3]
    L. Kavan, A. Kay, B. O'Regan and M. Grätzel,J. Electroanal. Chem. 346 (1993) 291.Google Scholar
  4. [4]
    C. K. Mann,Electroanal. Chem. vol. 3 (edited by A. J. Bard), Marcel Dekker, New York (1969).Google Scholar
  5. [5]
    N. L. Wienbergin ‘Technique of Electroorganic Synthesis’, J. Wiley & Sons, New York (1974) p. 29.Google Scholar
  6. [6]
    G. J. Janz and R. P. T. Tomkins, ‘Nonaqueuous Electrolytes Handbook’, vol 2, Academic Press, New York (1972).Google Scholar
  7. [7]
    R. J. Burris, PhD thesis, University of Tennesse, Knoxville (1962).Google Scholar
  8. [8]
    J. L. Jones and H. A. Fritsche,J. Electroanal. Chem. 12 (1966) 334.Google Scholar
  9. [9]
    M. C. Giordano, J. C. Baran and A. J. Arvia,Electrochim. Acta 11 (1966) 741.Google Scholar
  10. [10]
    E. Yu. Alekseeva, V. A. Safonov and O. A. Petrii,Elektrokhimia 18 (1982) 1290.Google Scholar
  11. [11]
    H. Gampp and S. J. Lippard,Inorg. Chem. 22 (1983) 357.Google Scholar
  12. [12]
    R. L. Bartzatt and J. Carr,Transition. Met Chem. 11 (1986) 116.Google Scholar
  13. [13]
    M. J. Davies, B. C. Gilbert and R. O. C. Norman,J. Chem. Soc. Perkin Trans. 2 (1984) 503.Google Scholar
  14. [14]
    L. Kavan, P. Krtil and M. Grätzel,J. Electroanal. Chem. 373 (1994) 123.Google Scholar
  15. [15]
    P. Krtil, L. Kavan and P. Novák,J. Electrochem Soc. 140 (1993) 3390.Google Scholar
  16. [16]
    L. Kavan and M. Grätzel,Electrochim. Acta 40 (1995) 643.Google Scholar
  17. [17]
    A. Bewick and S. Pons,in ‘Advances in Infrared and Raman Spectroscopy’, vol. 12 (edited by R. J. H. Clark and R. E. Hester), J. Wiley & Sons, Heyden (1985) p. 1.Google Scholar
  18. [18]
    P. A. Christensen and A. Hamnett,in ‘Comprehensive Chemical Kinetics’, vol. 29 (edited by R.G. Compton and A. Hammett), Elsevier, Amsterdam (1989) p. 1.Google Scholar
  19. [19]
    J. K. Foley, C. Krozeniewski and S. Pons,Canad. J. Chem. 66 (1988) 201.Google Scholar
  20. [20]
    W. T. King and B. L. Crawford,J. Mol. Spectroscopy. 5 (1960) 421.Google Scholar
  21. [21]
    J. H. Carter, J. M. Freeman and T. Henshall,J. Mol. Spectroscopy 20 (1966) 402.Google Scholar
  22. [22]
    G. Socrates, ‘Infrared Characteristic Group Frequencies’, J. Wiley & Sons, Chichester, UK (1980) p. 112.Google Scholar
  23. [23]
    S. D. Ross, ‘Inorganic Infrared and Raman Spectra’ McGraw-Hill, London (1971).Google Scholar
  24. [24]
    S. R. Polo and M. K. Wilson,J. Chem. Phys. 22 (1954) 900.Google Scholar
  25. [25]
    J. G. David, H. E. Hallam,Spectrochim. Acta 23A (1967) 593.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • P. Krtil
    • 1
  • L. Kavan
    • 1
  • I. Hoskovcová
    • 1
  • K. Kratochvilová
    • 1
  1. 1.J. Heyrovský Institute of Physical ChemistryPragueCzech Republic

Personalised recommendations