Skip to main content
Log in

Anodic oxidation of dimethyl sulfoxide based electrolyte solutions: Anin situ FTIR study

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic oxidation of dimethyl sulfoxide (DMSO) based electrolyte solutions, containing LiClO4, LiBF4 and KPF6, on platinum (Pt), glassy carbon (GC) andn-TiO2 (anatase), electrodes was studied usingin situ Fourier transform infrared spectroscopy (FTIR). All solutions contained small amounts of H2O. Regardless of the supporting electrolyte all systems were unstable at potentials above 1.0 V vs SCE. The major oxidation product is dimethyl sulfone, formation of which is initiated by the trace water breakdown. In contrast to acetonitrile based solutions there is no evidence of electrolyte involvement in the breakdown process. Photoanodic decomposition of dimethyl sulfoxide based solutions proceeds in the same way as the anodic oxidation in the dark. In the presence of nucleophilic agent (iodides) the prevailing redox process is iodide oxidation. Small amounts of, probably, methylsulfinyliodide are also formed. The irreversible consumption of charge mediator significantly restricts the possible practical use of DMSO in photoelectrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Nagatomo, M. Mitsui, K. Matsutani and O. Omoto,Trans. Inst. Electron. Inf. Commun. Eng. E70, (1987) 346.

    Google Scholar 

  2. B. O'Regan and M. Grätzel,Nature,353 (1991) 737.

    Google Scholar 

  3. L. Kavan, A. Kay, B. O'Regan and M. Grätzel,J. Electroanal. Chem. 346 (1993) 291.

    Google Scholar 

  4. C. K. Mann,Electroanal. Chem. vol. 3 (edited by A. J. Bard), Marcel Dekker, New York (1969).

    Google Scholar 

  5. N. L. Wienbergin ‘Technique of Electroorganic Synthesis’, J. Wiley & Sons, New York (1974) p. 29.

    Google Scholar 

  6. G. J. Janz and R. P. T. Tomkins, ‘Nonaqueuous Electrolytes Handbook’, vol 2, Academic Press, New York (1972).

    Google Scholar 

  7. R. J. Burris, PhD thesis, University of Tennesse, Knoxville (1962).

  8. J. L. Jones and H. A. Fritsche,J. Electroanal. Chem. 12 (1966) 334.

    Google Scholar 

  9. M. C. Giordano, J. C. Baran and A. J. Arvia,Electrochim. Acta 11 (1966) 741.

    Google Scholar 

  10. E. Yu. Alekseeva, V. A. Safonov and O. A. Petrii,Elektrokhimia 18 (1982) 1290.

    Google Scholar 

  11. H. Gampp and S. J. Lippard,Inorg. Chem. 22 (1983) 357.

    Google Scholar 

  12. R. L. Bartzatt and J. Carr,Transition. Met Chem. 11 (1986) 116.

    Google Scholar 

  13. M. J. Davies, B. C. Gilbert and R. O. C. Norman,J. Chem. Soc. Perkin Trans. 2 (1984) 503.

    Google Scholar 

  14. L. Kavan, P. Krtil and M. Grätzel,J. Electroanal. Chem. 373 (1994) 123.

    Google Scholar 

  15. P. Krtil, L. Kavan and P. Novák,J. Electrochem Soc. 140 (1993) 3390.

    Google Scholar 

  16. L. Kavan and M. Grätzel,Electrochim. Acta 40 (1995) 643.

    Google Scholar 

  17. A. Bewick and S. Pons,in ‘Advances in Infrared and Raman Spectroscopy’, vol. 12 (edited by R. J. H. Clark and R. E. Hester), J. Wiley & Sons, Heyden (1985) p. 1.

    Google Scholar 

  18. P. A. Christensen and A. Hamnett,in ‘Comprehensive Chemical Kinetics’, vol. 29 (edited by R.G. Compton and A. Hammett), Elsevier, Amsterdam (1989) p. 1.

    Google Scholar 

  19. J. K. Foley, C. Krozeniewski and S. Pons,Canad. J. Chem. 66 (1988) 201.

    Google Scholar 

  20. W. T. King and B. L. Crawford,J. Mol. Spectroscopy. 5 (1960) 421.

    Google Scholar 

  21. J. H. Carter, J. M. Freeman and T. Henshall,J. Mol. Spectroscopy 20 (1966) 402.

    Google Scholar 

  22. G. Socrates, ‘Infrared Characteristic Group Frequencies’, J. Wiley & Sons, Chichester, UK (1980) p. 112.

    Google Scholar 

  23. S. D. Ross, ‘Inorganic Infrared and Raman Spectra’ McGraw-Hill, London (1971).

    Google Scholar 

  24. S. R. Polo and M. K. Wilson,J. Chem. Phys. 22 (1954) 900.

    Google Scholar 

  25. J. G. David, H. E. Hallam,Spectrochim. Acta 23A (1967) 593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krtil, P., Kavan, L., Hoskovcová, I. et al. Anodic oxidation of dimethyl sulfoxide based electrolyte solutions: Anin situ FTIR study. J Appl Electrochem 26, 523–527 (1996). https://doi.org/10.1007/BF01021976

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021976

Keywords

Navigation