Skip to main content
Log in

Metabolism and excretion of the furanocoumarin xanthotoxin by parsnip webworm,Depressaria pastinacella

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The parsnip webworm,Depressaria pastinacella, feeds on plants containing high concentrations of furanocoumarins. compounds toxic to many organisms. Parsnip webworm larvae were fed radiolabeled xanthotoxin to quantify the detoxification of this furanocoumarin. They metabolized approximately 95% of the ingested xanthotoxin, indicating that metabolic detoxification is important in their tolerance to this allelochemical. Excretion of xanthotoxin and its metabolites was not restricted to the frass but also occurred by means of the silk glands. The silk glands contained half as much of the tritiated compounds as the rest of the body. Because of the feeding habits of this insect, such an excretory pathway may have implications for interactions with predators and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashkenazy, D., Kashman, Y., Nyksa, A., andFriedman, J. 1985. Furocoumarins in shoots ofPituranthos triradiatus (Umbelliferae) as protectants against grazing by hyrax (Procaviidea:Procavia capensis syriaca).J. Chem. Ecol. 11:231–239.

    Google Scholar 

  • Ashwood-Smith, M.J., Ring, R.A., Liu, M., Phillips, S., andWilson, M. 1984. Furocoumarin resistance in the larvae ofPhytomyza spondylii (Diptera: Agromyzidae) feeding onHeracleum lanatum is associated with the enzymatic breakdown of 8-methoxypsoralen.Can. J. Zool. 62:1971–1976.

    Google Scholar 

  • Barbosa, P., Saunders, J.A., Kemper, J., Trumbule, R., Olechno, J., andMartinat, P. 1985. Plant allelochemicals and insect parasitoids; effects of nicotine onCotesia congregata (Say) (Hymenoptera: Braconidae) andHyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae).J. Chem. Ecol. 12:1319–1328.

    Google Scholar 

  • Berenbaum, M. 1978. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores.Science 201:532–534.

    Google Scholar 

  • Berenbaum, M. 1981. Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: Plant chemistry and community structure.Ecology 62:1254–1266.

    Google Scholar 

  • Berenbaum, M. 1983. Coumarins and caterpillars: a case forcoevolution.Evolution 37:163–179.

    Google Scholar 

  • Berenbaum, M., andFeeny, P. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race?Science 212:927–929.

    Google Scholar 

  • Berenbaum, M., andNeal, J. J. 1985. Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant.J. Chem. Ecol. 11:1349–1358.

    Google Scholar 

  • Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1984. Furanocoumarins in seeds of wild and cultivated parsnip.Phytochemistry 23:1809–1810.

    Google Scholar 

  • Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm.Evolution 40:1215–1228.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1986. Fate of ingested iridoid glycosides in lepidopteran herbivores.J. Chem. Ecol. 12:169–178.

    Google Scholar 

  • Brattsten, L.B. 1986. Fate of ingested plant allelochemicals in herbivorous insects, pp. 211–255,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of insect-plant associations. Plenum Press, New York.

    Google Scholar 

  • Brunet, P.C.J., andColes, B.C. 1974. Tanned silks.Proc. R. Soc. Lond. Ser. B. 187:133–170.

    Google Scholar 

  • Bull, D.L., Ivie, G.W., Beier, R.C., Pryor, N.W., andOertli, E.H. 1984. Fate of photosensitizing furanocoumarins in tolerant and sensitive insects.J. Chem. Ecol. 10:893–911.

    Google Scholar 

  • Bull, D.L., Ivie, G.W., Beier, R.C., andPryor, N. W. 1986. In vitro metabolism of a linear furanocoumarin (8-methoxypsoralen, xanthotoxin) by mixed-function oxidases of larvae of black swallowtail butterfly and fall armyworm.J. Chem. Ecol. 12:885–892.

    Google Scholar 

  • Camm, E.L., Wat, C.-W., andTowers, G.H.N. 1976. An assessment of the roles of furanocoumarins inHeracleum lanatum.Can. J. Bot. 54:2562–2566.

    Google Scholar 

  • Duffey, S.S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol. 25:447–477.

    Google Scholar 

  • Hodges, R.W. 1974. Gelechioidea: Oecophoridae; the moths of North America north of Mexico, fascicle 6.2. E. W. Classey Limited and R.B.D. Publications Inc., London.

    Google Scholar 

  • Ivie, G.W., Bull, D.L., Beier, R.C., Pryor, N.W., andOertli, E.H. 1983. Metabolic detoxification: Mechanism of insect resistance to plant psoralens.Science 221:374–376.

    Google Scholar 

  • Jeffords, M.R., Maddox, J.V., andO'Hayer, K.W. 1987. Microsporidian spores in gypsy moth larval silk: A possible route of horizontal transmission.J. Invert. Pathol. 49:332–333.

    Google Scholar 

  • Johnson, C., Brannon, D. R., andKuć, J. 1973. Xanthotoxin: A phytoalexin ofPastinaca sativa root.Phytochemistry 12:2961–2962.

    Google Scholar 

  • Knox, J.P., andDodge, A.D. 1985. Singlet oxygen and plants.Phytochemistry 24:889–986.

    Google Scholar 

  • McDougall, C., Philogéne, B.J.R., Arnason, J.T., andDonskov, N. 1988. Comparative effects of two plant secondary metabolites on host-parasitoid association.J. Chem. Ecol. 14:1239–1252.

    Google Scholar 

  • Murray, R.D.H., Mendez, J., andBrown, S.A. 1982. The Natural Coumarins. J. Wiley & Sons, Ltd., Chichester, U.K.

    Google Scholar 

  • Muckensturm, B., Duplay, D., Robert, P.C., Simonis, M.T., andKienlen, J.-C. 1981. Substances antiappetantes pour insectes phytophages presentes dansAngelica silvestris etHeracleum sphondylium.Biochem. Syst. Ecol. 9:289–292.

    Google Scholar 

  • Nitao, J.K. 1989. Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarin-containing plants.Ecology 70:629–635.

    Google Scholar 

  • Nitao, J. K., andBerenbaum, M.R. 1988. Laboratory rearing of the parsnip webworm,Depressaria pastinacella (Lepidoptera: Oecophoridae).Ann. Entomol. Soc. Am. 81:485–487.

    Google Scholar 

  • Nitao, J. K., andZangerl, A.R. 1987. Floral development and chemical defense allocation in wild parsnip (Pastinaca sativa).Ecology 68:521–529.

    Google Scholar 

  • Stermitz, F.R., Gardner, D.R., andMcFarland, N. 1988. Iridoid glycoside sequestration by two aposematicPenstemon-feeding geometrid larvae.J. Chem. Ecol. 14:435–441.

    Google Scholar 

  • Yajima, T., Kato, N., andMunakata, K. 1977. Isolation of insect anti-feeding principles inOrixa japonica Thunb.Agric. Biol. Chem. 41:1263–1268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitao, J.K. Metabolism and excretion of the furanocoumarin xanthotoxin by parsnip webworm,Depressaria pastinacella . J Chem Ecol 16, 417–428 (1990). https://doi.org/10.1007/BF01021774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021774

Key words

Navigation