Biotechnology Letters

, Volume 16, Issue 2, pp 155–160 | Cite as

The effect of substrate on the molecular weight ofpoly-β-hydroxybutyrate produced byAzotobacter vinelandii UWD

  • Guo-Qiang Chen
  • William J. Page


Azotobacter vinelandii UWD produced very high molecular weight (MW) (approx. 4 million Daltons) poly-β-hydroxybutyrate (PHB) when grown in 5% w/v beet molasses medium. The polymer MW decreased as the beet molasses concentration was increased. Similar results were obtained in equivalent concentrations of sucrose (as raw sugar), but the polymer MW was not greater than 1.6 million. This difference was not caused by more severe oxygen-limitation in the beet molasses medium. It appeared that the nonsugar components of beet molasses promoted the formation of higher MW polymer. Fish peptone, a known PHB-yield-promoter in this organism, did not promote the formation of very high MW polymer.


Polymer Sugar Molecular Weight Sucrose Organic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. J., and Dawes, E. A. (1990). Microbiol. Rev. 54, 450–472.Google Scholar
  2. Anderson, A. J., Williams, D. R., Taidi, B., Dawes, E. A., and Ewing, D. F. (1992). FEMS Microbiol. Rev. 103, 93–102.Google Scholar
  3. Budwill, K., Fedorak, P., and Page, W. J. (1992). Appl. Environ. Microbiol. 58, 1398–1401.Google Scholar
  4. Byrom, D. (1987). Trend Biotechnol. 5, 246–250.Google Scholar
  5. Chen, G. Q., Konig, K. H., and Lafferty, R. M. (1992). Effects of medium conditions on molecular weights of poly-β-hydroxybutyrate (PHB) and poly-β-hydroxyvalerate (PHB-co-HV) produced by strains ofAlcaligenese latus. In:International Symposium on Bacterial Polyhydroxyalkanoates, H. G. Schlegel and A. Steinbüchel, ed., pp. 408–409, Goltze-Druck, Göttingen, Germany.Google Scholar
  6. de Koning, G. J. M., and Maxwell, I. A. (1993). J. Environ. Polymer Degrad. 1, 223–226.Google Scholar
  7. Gerngross, T., Reilly, P., Stubble, J. O., Sinskey, A. J., and Peoples, O. P. (1993). J. Bacteriol. 175, 5289–5293.Google Scholar
  8. Korsatko, W., Wabnegg, B., Braunegg, G., Lafferty, R. M., and Strempfl, F. (1983). Pharm. Ind. 42, 525–527.Google Scholar
  9. Page, W. J. (1992a), FEMS Microbiol. Rev. 103, 149–158.Google Scholar
  10. Page, W. J. (1992b). Biotechnol. Letters. 14, 385–390.Google Scholar
  11. Page, W. J. (1992c). Appl. Microbiol. Biotechnol. 38, 117–121.Google Scholar
  12. Page, W. J., and Rudy, B. (1993). Biotechniques 14, 228–233.Google Scholar
  13. Page, W. J., and Knosp, O. (1989). Appl. Environ. Microbiol. 55, 1334–1339.Google Scholar
  14. Page, W. J., Manchak, J., and Rudy, B. (1992). Appl. Environ. Microbiol. 58, 2866–2873.Google Scholar
  15. Suzuki, T., Deguchi, H., Yamane, T., Shimizu, S., and Gekko, K. (1988). Appl. Microbiol. Biotechnol. 27, 487–491.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Guo-Qiang Chen
    • 1
  • William J. Page
    • 1
  1. 1.Department of MicrobiologyUniversity of AlbertaEdmontonCanada

Personalised recommendations