Hyperfine Interactions

, Volume 7, Issue 1, pp 211–227 | Cite as

TDPAC calculations for mixed SDW and Zeeman hyperfine interactions

Application to theCr−Ta system
  • G. Teisseron
  • P. Peretto
  • J. Berthier


The time differential perturbed angular correlation curves have been calculated for the hyperfine field distribution arising from the superposition of an isotropic system of spin density waves and of an external magnetic field. The results of these calculations have been applied to theCr−Ta system. The agreement between the experiments and the calculations is fair. This shows that the spin density waves of chromium are not significantly polarized by a 12 kOe magnetic field. However a large negative shift of the Zeeman interaction is observed in the liquid nitrogen experiment: ΔH/H=−0.18±0.02. The negative sign of the shift shows that the hyperfine field is antiparallel to the local magnetization.


Magnetic Field External Magnetic Field Field Distribution Hyperfine Interaction Hyperfine Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Les courbes de corrélation angulaire différentielle ont été calculées pour une distribution de champs hyperfins résultant de la superposition des interactions d'un noyau avec un système d'ondes de densité de spin d'une part et avec un champ magnétique extérieur d'autre part. Les résultats de ces calculs ont été appliqués à l'alliageCr−Ta. L'accord entre l'expérience et les calculs est bon ce qui montre que les ondes de densité de spin ne sont pas polarisées par un champ magnétique de 12 kOe. Cependant un déplacement de l'interaction de Zeeman de −0.18±0.02 observé à 77 K permet d'affirmér que le champ hyperfin est opposé à l'aimantation locale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.A. Werner, A. Arrott and H. Kendrick, Phys Rev. 155 (1967) 528.Google Scholar
  2. [2]
    R. Street and B. Window, Proc. Phys. Soc. 89 (1966) 587; H. Kontani, T. Hioki and Y. Masuda, J. Phys. Soc. Jap. 39 (1975) 672.Google Scholar
  3. [3]
    G. Teisseron, J. Berthier, P. Peretto, C. Benski, M. Robin and S. Choulet, J. Magn. Mag. Mat. 8 (1978) 157.Google Scholar
  4. [4]
    P. Peretto, G. Teisseron and J. Berthier, Hyperfine Int. 7 (1979) 1.Google Scholar
  5. [5]
    D. Bender and J. Müller, Phys. Kondens. Materie 10 (1970) 342.Google Scholar
  6. [6]
    M.K. Wilkinson, E.O. Wollan, W.C. Koehler and J.W. Cable, Phys. Rev. 127 (1962) 2080.Google Scholar
  7. [7]
    D. Mukamel and S. Krinsky, Phys. Rev. 13B (1976) 5065; P. Back and D. Mukamel, Phys. Rev. 13B (1976) 5086.Google Scholar
  8. [8]
    M. Crisan and A. Anghel, J. Magn. Mag. Mat. 8 (1978) 164.Google Scholar
  9. [9]
    A. Arrott, S.A., Werner and H. Kendrick, Phys. Rev. Lett. 14, (1965) 1022.Google Scholar
  10. [10]
    J.M. Rossat-Mignod and T.D. Achse, private communication.Google Scholar
  11. [11]
    E.I. Kondorsky, T.I. Kostina and L.N. Ekonomova, Intern. J. Magn. 2 (1972) 161.Google Scholar
  12. [12]
    R.M. Steffen and M. Frauenfelder, in Perturbed angular correlation (North-Holland, Amsterdam).Google Scholar
  13. [13]
    A.W. Overhauser, J. Phys. Chem. Solids 13 (1960) 71.Google Scholar
  14. [14]
    G. Quezel and M. Maeder, private communication.Google Scholar

Copyright information

© North-Holland Publishing Company 1979

Authors and Affiliations

  • G. Teisseron
    • 1
  • P. Peretto
    • 1
  • J. Berthier
    • 1
  1. 1.DRF/Laboratoire d'Interactions HyperfinesCentre d'Etudes Nucléaires de GrenobleGrenoble CedexFrance

Personalised recommendations