Skip to main content
Log in

The effect of lattice vibrations on the pressure dependence of the electric field gradient in cadmium metal

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We determined the pressure dependence of the electric field gradientq in Cd at 150, 300, and 575 K by perturbed angular correlations on111Cd. Close to the melting point,q varies less with pressure than at low temperature, although Cd becomes more anisotropic. We attribute this to volume effects which grow with increasing lattice vibration amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bayer, Z. Phys. 130 (1951) 227.

    Google Scholar 

  2. D. Quitmann, K. Nishiyama and D. Riegel, 18th Ampére Congress, Nottingham, England, (1974) 349.

  3. K. Nishiyama, F. Dimmling, Th. Kornrumpf and D. Riegel, Phys. Rev. Lett. 37 (1976) 357; K. Nishiyama and D. Riegel, Phys. Lett. 57A (1976) 270; K. Nishiyama and D. Riegel, Hyperfine Interactions 4 (1978) 490.

    Google Scholar 

  4. P. Jena, Phys. Rev. Lett. 36 (1976) 418.

    Google Scholar 

  5. F.W. de Wette, Phys. Rev. 123 (1961) 103; F.W. de Wette and C.E. Schacher, Phys. Rev. 137 (1965) A92.

    Google Scholar 

  6. T. Butz, Hyperfine Interactions 4 (1978) 528.

    Google Scholar 

  7. T. Butz, Physica Scripta 17 (1978) 445.

    Google Scholar 

  8. See e.g. P. Heubes, thesis, University of Erlangen-Nürnberg, Germany (1975) unpublished.

  9. E. Bodenstedt, U. Ortabasi and W.H. Ellis, Phys. Rev. B6 (1972) 2909.

    Google Scholar 

  10. T.R. Gerholm, Z.M. Cho, L. Eriksson, L. Gidefeldt and E.G. Petterson, Nucl. Instr. 100 (1972) 33.

    Google Scholar 

  11. H. Haas and D.A. Shirley, J. Chem. Phys. 58 (1973) 3339.

    Google Scholar 

  12. E. Karlsson, E. Matthias and K. Siegbahn, (eds) Perturbed angular correlations (North-Holland, Amsterdam).

  13. L.E. Reeves, G.J. Scott and S.E. Babb, Jr., J. Chem. Phys. 40 (1964) 3662.

    Google Scholar 

  14. See e.g. J. Christiansen, P. Heubes, R. Keitel, W. Klinger, W. Loeffler, W. Sandner and W. Witthuhn, Z. Phys. B24 (1976) 177.

    Google Scholar 

  15. P. Raghavan, R.S. Raghavan and W.B. Holzapfel, Phys. Rev. Lett. 28 (1972) 903.

    Google Scholar 

  16. E.A. Perez-Albuerne, R.L. Clendenen, R.W. Lynch and H.G. Drickamer, Phys. Rev. 142 (1966) 392.

    Google Scholar 

  17. T. Butz and G.M. Kalvius, Hyperfine Interactions 2 (1976) 222; T. Butz, Physica Scripta 17 (1978) 87.

    Google Scholar 

  18. C.W. Garland and J. Silverman, Phys. Rev. 119 (1960) 1218; 127 (1962) 2287.

    Google Scholar 

  19. Y.A. Chang and L. Himmel, J. Appl. Phys. 37 (1966) 3787.

    Google Scholar 

  20. W.B. Pearson, A handbook of lattice spacings and structures of metals and alloys, vol. 1 (Pergamon, London, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butz, T., Lindgren, B. & Saitovitch, H. The effect of lattice vibrations on the pressure dependence of the electric field gradient in cadmium metal. Hyperfine Interact 7, 81–91 (1979). https://doi.org/10.1007/BF01021494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021494

Keywords

Navigation