Advertisement

Journal of Chemical Ecology

, Volume 16, Issue 1, pp 151–164 | Cite as

Sequestration of distasteful compounds by some pharmacophagous insects

  • Ritsuo Nishida
  • Hiroshi Fukami
Article

Abstract

Several pharmacophagous insects have been shown to sequester specific kairomonal substances or their derivatives in their body tissues. Turnip sawflies,Athalia rosae, visit a plant,Clerodendron trichototmum (Verbenaceae), and feed voraciously on the leaf surface. Clerodendrins were characterized as the potent phagostimulants forA. rosae adults. The insect sequesters some of the analogs and becomes extremely bitter on its body surface. Some chrysomelid leaf beetles associated with cucurbitacins were found to store high concentrations of these bitter principles in their body. South American polyphagous beetles,Diabrotica speciosa andCerotoma arcuata, are strongly arrested by root components from the cucurbit plant,Ceratosanthes hilariana, and selectively accumulate 23,24-dihydrocucurbitacin D, effectively gaining bitterness. Similarly, four species of Asian pumpkin leaf beetles belonging to the genusAulacophora were shown to sequester the same compound in body tissue as the major bitter principle. Three phenylpropanoids closely related to methyl eugenol were found to accumulate in the rectal glands of the male Oriental fruit fly,Dacus dorsalis. One of the rectal gland components, 2-allyl-4,5-dimethoxyphenol was shown to be released in the air during courtship. In all of these cases, selectively sequestered compounds strongly deterred feeding by some predators, thus serving as allomones in this context. Kairomonal and pheromonal functions linked with allomonal sequestration by pharmacophagous feeding has also been suggested.

Key Words

Sequestration pharmacophagy kairomone allomone Athalia spp. Diabrotica spp. Dacus dorsalis clerodendrin cucurbitacin methyl eugenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M. 1988. A biosystematic study of the genusAthalia Leach of Japan (Hymenoptera: Tenthredinidae).Esakia 26:91–131.Google Scholar
  2. Belles, X., Camps, F., Coll, J., andPiulachs, M.D. 1985. Insect antifeedant activity of clerodane diterpenoids against larvae ofSpodoptera littoralis (Boisd) (Lepidoptera).J. Chem. Ecol. 11:1439–1445.Google Scholar
  3. Blaney, W.M., Simmonds, M.S.J., Ley, S.V., andJones, P.S. 1988. Insect antifeedants: A behavioral and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids.Entomol. Exp. Appl. 46:267–274.Google Scholar
  4. Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.Google Scholar
  5. Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies.Entomol, Exp. Appl. 24:64–77.Google Scholar
  6. Boppré, M. 1984. Redefining “pharmacophagy. ”J. Chem. Ecol. 10:1151–1154.Google Scholar
  7. Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (Pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.Google Scholar
  8. Boppré, M., Petty, R.L., Schneider, D., andMeinwald, J. 1978. Behaviorally meadiated contacts between scent organs: Another prerequisite for pheromone production inDanaus chrysippus males (Lepidoptera).J. Comp. Physiol. 126:97–103.Google Scholar
  9. Brower, L.P. 1969. Ecological chemistry.Sci. Am. 220:22–29.Google Scholar
  10. Chambers, D.L. 1977. Attractants for fruit fly survey and control, pp. 327–344, in H.H. Shorey and J.J. Mckelvey (eds.). Chemical Control of Insect Behavior. Wiley, New York.Google Scholar
  11. Chambliss, O.L., andJones, C.M. 1966a. Cucurbitacins: Specific insect attractants in cucurbitaceae.Science 153:1392–1393.Google Scholar
  12. Chambliss, O.L., andJones, C.M. 1966b. Chemical and genetic basis for insect resistance in cucurbits.Proc. Am. Soc. Hortic. Sci. 89:394–405.Google Scholar
  13. Conner, W.E., Eisner, T., Vander Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.Google Scholar
  14. DaCosta, C.P., andJones, C.M. 1971. Cucumber beetle resistance and mite susceptability controlled by the bitter gene inCucumis saliva L.Science 172:1145–1146.Google Scholar
  15. David, A., andVallance, D.K. 1955. Bitter principles of Cucurbitaceae.J. Pharm. Pharmacol. 7:295–296.Google Scholar
  16. Doskotch, R.W., andHufford, C.D. 1970. Hexanor-cucurbitacin D, a degraded cucurbitacin fromBegonia tuberhybrida var.alba. Can. J. Chem. 48:1787–1788.Google Scholar
  17. Duncan, G.R., Levi, D.D., andPyttel, R. 1968. Bitter principles of the cucurbitaceae:Bryonia dioica.Planta Med. 16:224–229.Google Scholar
  18. Ferguson, J.E., andMetcalf, R.L. 1985. Cucurbitacins: Plant derived defense compounds for diabroticites (Coleoptera: Chrysomelidae).J. Chem. Ecol. 11:311–318.Google Scholar
  19. Ferguson, J.E., Metcalf, R.L., andFisher, D.C. 1985. Disposition and fate of cucurbitacin B in five species of diabroticites.J. Chem. Ecol. 11:1307–1321.Google Scholar
  20. Fletcher, B.S., Bateman M.A., Hart, N.K., andLamberton J.A. 1975. Identification of a fruit fly attractant in Australian plant,Zieria smithii, asO-methyl eugenol.J. Econ. Entomol. 68:815–816.Google Scholar
  21. Geuskens, R.B.M., Luteijin, J.M., andSchoonhoven, L.M. 1983. Antifeedant activity of some ajugarin derivatives in three lepidopterous species.Experientia 39:403–404.Google Scholar
  22. Gould, F., andMassay, A. 1984. cucurbitacins and predation of the spotted cucumber beetle,Diabrotica undecimpunctata howardi.Entomol. Exp. Appl. 36:273–278.Google Scholar
  23. Hernández, A., Pascual, C., Sanz, J., andRodríguez, B. 1982. Diterpenoids fropmAjuga chamaepitys: Two Neo-clerodane derivatives.Phytochemistry 21:2909–2911.Google Scholar
  24. Kato, N., Shibayama, S., andMunakata, K. 1971. Structure of the diterpene clerodendrin A.J. Chem. Soc. Chem. Commun. 1971:1632–1633.Google Scholar
  25. Kato, N., Takahashi, M., Shibayama, S., andMunakata, K. 1972. Antifeeding active substances for insects inClerodendron trichotomum Thumb. Agric. Biol. Chem. 36:2579–2582.Google Scholar
  26. Kawano, Y., Mitchell, W.C., andMatsumoto, H. 1968. Identification of male Oriental fruit fly attractant in the golden shower blossom.J. Econ. Entomol. 61:986–988.Google Scholar
  27. Kitano, H. 1988. Experimental studies on the mating behavior ofAthalia lugens infumata.Kontyu 56:180–188.Google Scholar
  28. Kobayashi, R.M., Ohinata, K., Chambers, D.L., andFujimoto, M.S. 1978. Sex pheromones of the Oriental fruit fly and the melon fly: Mating behavior, bioassay method, and attraction of females by live males and by suspected pheromone glands of males.Environ. Entomol. 7:107–112.Google Scholar
  29. Kubo, Lee, Y.W., Bologh-Noir, V., Nakanishi, K., andChapya, A. 1976. Structure of ajugarins.J. Chem. Soc. Chem. Commun. 1976:949–950.Google Scholar
  30. Lavie, D., andGlotter, E. 1971. The cucurbitacins, a group of tetracyclic triterpens.Fortschr. Chem. Org. Naturst. 29:307–362.Google Scholar
  31. Meinwald, J., Meinwald, Y.C., andMazzocchi, P.H. 1969. Sex pheromone of Queen butterfly: Chemistry.Science 164:1174–1175.Google Scholar
  32. Metcalf, R.L. 1979. Plants, chemicals, and insects: Some aspects of coevolution.Bull. Entomol. Soc. Am. 25:30–35.Google Scholar
  33. Metcalf, R.L. 1986. Coevolutionary adaptations of rootworm beetles (Coleoptera. Chrysomelidae) to cucurbitacins.J. Chem. Ecol. 12:1109–1124.Google Scholar
  34. Metcalf, R.L., Rhodes, A.M., Metcalf, R.A., Ferguson, J., Metcalf, E.R., andLu, P.Y. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding uponCucurbita spp.Environ. Entomol. 11:931–937.Google Scholar
  35. Nielson, J.K., Larsen, M., andSorenson, H.J. 1977. Cucurbitacins E and I inIbelis amara, feeding inhibitor forPhyllotreta nemorum.Phytochemistry 16:1519–1522.Google Scholar
  36. Nishida, R., Fukami, H., Baker, T.C., Roelofs, W.L., andAgree, T.E. 1985. Oriental fruit moth pheromone: Attraction of females by an herbal essence, pp 47–63,in T.E. Acree, and D.M. Soderlund (eds.). Semiochemistry: Flavor and Pheromones. Walter de Gruyter, Berlin.Google Scholar
  37. Nishida, R., Fukami, H., Tanaka, Y., Magalhāes, B.P., Yokoyama, M., andBlumenschein, A. 1986. Isolation of feeding stimulants of Brazilian leaf beetles (Dibrotica speciosa andCerotoma arcuata) from the root ofCeratosanthes hilariana.Agric. Biol. Chem. 50:2831–2836.Google Scholar
  38. Nishida, R., Tan, K.H., Serit, M., Lajis, N.H., Sukari, A.M., Takahashi, S., andFukami, H. 1988a. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly,Dacus dorsalis.Experientia 44:534–536.Google Scholar
  39. Nishida, R., Tan, K.H., andFukami, H. 1988b.Cis-3,4-Dimethoxycinnamyl alcohol from the rectal glands of male Oriental fruit fly,Dacus dorsalis.Chem. Express 3:207–210.Google Scholar
  40. Nishida, R.,Yokoyama, M., andFukami, H. 1990. Sequestration of cucurbitacins by the New and Old World chrysomelid beetles. In preparation.Google Scholar
  41. Nishida, R., Fukami, H., Miyata, T., andTakeda, M. 1989. Clerodendrins: Feeding stimulants of the adult turnip sawfly,Athalia rosae ruficornis, fromClerodendron trhciotomum (Verbenaceae).Agric. Biol. Chem. 53:1641–1645.Google Scholar
  42. Ohinata, K., Jacobson, M., Kobayashi, R.M., Chambers, D.L., Fujimoto, M.S., andHiga, H.H. 1982. Oriental fruit fly and melon fly: Biological and chemical studies of smoke production by males.J. Environ. Sci. Health A17:197–216.Google Scholar
  43. Schneider, D., Boppré, M., Zweig, J., Horsley, S.B., Bell, T.W., Meinwald, J., Hansen, K., andDiehl, E.W. 1982. Scent organ development inCreatonotos moth: Regulation by pyrrolizidin alkaloids.Science 215:1264–1265.Google Scholar
  44. Shah, A.H., andPatel, R.C. 1975. Role of Tulsi plant (Ocimum sanctum) in control of mango fruit fly,Dacus correctes Bezzi (Tephritidae: Diptera).Curr. Sci. 45:313–314.Google Scholar
  45. Sillén-Tullberg, B. 1988. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis.Evolution 42:293–305.Google Scholar
  46. Sinha, A.K., andKrishna, S.S. 1969. Feeding ofAulacophora foveicollis on cucurbitacin.J. Econ. Entomol. 62:512–513.Google Scholar
  47. Sinha, A.K., andKrishna, S.S. 1970. Further studies on the feeding behavior ofAulacophora foveicollis on cucurbitacin.J. Econ. Entomol. 63:333–334.Google Scholar
  48. Steiner, L.F., Mitchell, W.C., Harris, E.J., Kozuma, T.T., andFujimoto, M.S. 1965. Oriental fruit fly eradication by male annihilation.J. Econ. Entomol. 58:961–964.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Ritsuo Nishida
    • 1
  • Hiroshi Fukami
    • 1
  1. 1.Pesticide Research Institute Faculty of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations