Journal of Statistical Physics

, Volume 45, Issue 3–4, pp 765–767 | Cite as

Velocity of propagation in diffusional quantum theory

  • M. D. Kostin
Articles
  • 20 Downloads

Abstract

An equation of diffusional quantum theory which takes into account the finite velocity of propagation is derived from Kelvin's telegraph equation and Fürth's relation. The equation is then used to derive the ground state of quantum systems and to derive the Sommerfeld-Dirac expression for the ionization potential of hydrogen-like ions.

Key words

Quantum theory diffusion Kelvin's telegraph equation velocity of propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Fürth,Z. Phys. 81:143 (1933).Google Scholar
  2. 2.
    G. G. Comisar,Phys. Rev. B 138:1332 (1965).Google Scholar
  3. 3.
    E. Nelson,Dynamic Theories of Brownian Motion (Princeton University Press, Princeton, New Jersey, 1967).Google Scholar
  4. 4.
    E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, New Jersey, 1985).Google Scholar
  5. 5.
    W. Thomson (Lord Kelvin),Proc. R. Soc. Math. Phys. Papers 3:61 (1855).Google Scholar
  6. 6.
    S. Goldstein,J. Mech. Appl. Math. 4:129 (1951).Google Scholar
  7. 7.
    A. G. Webster,Partial Differential Equations of Mathematical Physics (Dover, New York, 1955), pp. 173ff.Google Scholar
  8. 8.
    A. E. Scheidegger,The Physics of Flow through Porous Media (University of Toronto Press, Toronto, 1960), pp. 260ff.Google Scholar
  9. 9.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, London, 1958), pp. 272ff.Google Scholar
  10. 10.
    H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One- and Two-Electron Atoms (Plenum Press, New York, 1977), p. 83.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • M. D. Kostin
    • 1
  1. 1.School of Engineering and Applied SciencePrinceton UniversityPrinceton

Personalised recommendations