Journal of Statistical Physics

, Volume 45, Issue 3–4, pp 541–560 | Cite as

Nonisotropic solutions of the Boltzmann equation

  • R. O. Barrachina
  • C. R. Garibotti
Articles

Abstract

We consider the relaxation to equilibrium of a spatially uniform Maxwellian gas. We expand the solution of the nonlinear Boltzmann equation in a truncated series of orthogonal functions. We integrate numerically the equation for non-isotropic initial conditions. For certain simple conditions we find interesting proximity effects and other transient relaxation phenomena at thermal energies. Furthermore, we define a resummation of the orthogonal expansion which is more convenient than the original one for the numerical analysis of the relaxation process.

Key words

Boltzmann equation nonisotropic initial conditions Maxwell molecules moment equations numerical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Lebowitz and E. W. Montroll, eds.,Non-Equilibrium Phenomena I, The Boltzmann Equation (North-Holland, Amsterdam, 1983).Google Scholar
  2. 2.
    M. H. Ernst,Phys. Rep. 78:1 (198).Google Scholar
  3. 3.
    H. Grad,Commun. Pure Appl. Math. 4:331 (1949).Google Scholar
  4. 4.
    A. A. Nikol'skii,Sov. Phys. Dokl. 8:633, 639 (1964).Google Scholar
  5. 5.
    E. M. Hendriks and T. Nieuwenhuizen,J. Stat. Phys. 29:59 (1982).Google Scholar
  6. 6.
    R. E. Caflish,Commun. Math. Phys. 74:97 (1980).Google Scholar
  7. 7.
    C. Truesdell and R. G. Muncaster,Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas (Academic Press, New York, 1980).Google Scholar
  8. 8.
    E. H. Hauge,Phys. Lett. 74A:183 (1979).Google Scholar
  9. 9.
    M. Alexanian,Phys. Lett. 74A:1 (1979).Google Scholar
  10. 10.
    A. V. Bobylev,Sov. Phys. Dokl. 20:820, 822 (1975).Google Scholar
  11. 11.
    V. V. Vedenyapin,Sov. Phys. Dokl. 26:26 (1981).Google Scholar
  12. 12.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar
  13. 13.
    M. Krook and T. T. Wu,Phys. Fluids 20:1589 (1977).Google Scholar
  14. 14.
    M. F. Barnsley and H. Cornille,J. Math. Phys. 21:1176 (1980).Google Scholar
  15. 15.
    R. O. Barrachina, D. H. Fujii and C. R. Garibotti,Phys. Lett. 109A:447 (1985).Google Scholar
  16. 16.
    M. Barnsley and G. Turchetti,Lett. Nuovo Cimento 26:188 (1979).Google Scholar
  17. 17.
    H. Cornille and A. Gervois,Phys. Lett. 79A:291 (1980).Google Scholar
  18. 18.
    D. H. Fujii, R. O. Barrachina and C. R. Garibotti,J. Stat. Phys. 44:95 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. O. Barrachina
    • 1
  • C. R. Garibotti
    • 1
    • 2
  1. 1.Centro Atómico BarilocheComisión Nacional de Energia AtómicaBariloche, R.N.Argentina
  2. 2.Consejo Nacional de Investigaciones Cientificas y TécnicasArgentina

Personalised recommendations