Abstract
In the quantum transport problem of a tight-binding Anderson model, the statistics of eigenvalues for the transfer matrices of thin disordered slabs is studied. Numerical simulations indicate that the probability distribution of nearest neighbor eigenvalue spacing and theΔ 3 statistics have already become close to that of the Gaussian orthogonal ensemble for sample lengths of the order of the mean free path, provided that transverse localization effects are not important. An intuitive argument is given why this should occur independently of the size of the matrix. Therefore, good mixing of the channels is not essential for obtaining Gaussian orthogonal ensemble type statistics and universal conductance fluctuations.
Similar content being viewed by others
References
S. Washburn and R. A. Webb,Adv. Phys. 35:375 (1986), and references therein.
A. D. Stone,Phys. Rev. Lett. 54:2692 (1985).
P. A. Lee and A. D. Stone,Phys. Rev. Lett. 55:1622 (1985); P. A. Lee, A. D. Stone, and H. Fukuyama,Phys. Rev. B 35:1039 (1987).
B. L. Al'tshuler,Pis'ma Zh. Eksp. Teor. Fiz. 41:530 (1985) [JETP Lett. 41:648 (1985)]; B. L. Alt'shuler and D. E. Khmel'nitskii,Pis'ma Zh. Eksp. Teor. Fiz. 42:291 (1985) [JETP Lett. 42:359 (1985)]; B. L. Alt'sshuler and B. I. Shklovskii,Zh. Eksp. Teor. Fiz. 91:220 (1986) [Sov. Phys. JETP 64:127 (1986)].
Y. Imry,Europhys. Lett. 1:249 (1986).
P. A. Mello,Phys. Rev. Lett. 60:1089 (1988); P. A. Mello, P. Pereyra, and N. Kumar,Ann. Phys. 181:290 (1988).
K. A. Muttalib, J.-L. Pichard, and A. Douglas Stone,Phys. Rev. Lett. 59:2475 (1987).
P. A. Mello, E. Akkermans, and B. Shapiro,Phys. Rev. Lett. 61:459 (1988).
N. Giordano,Phys. Rev. B 38:4746 (1988);36:4190 (1987).
P. W. Anderson,Phys. Rev. B 23:4828 (1981).
D. S. Fisher and P. A. Lee,Phys. Rev. B 23:6851 (1981); P. A. Lee and D. S. Fisher,Phys. Rev. Lett. 47:882 (1981).
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas,Phys. Rev. Lett. 61:459 (1988).
F. J. Dyson,J. Math. Phys. 3:140 (1962).
M. L. Mehta,Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York, 1967).
R. Balian,Nuovo Cimento 57:183 (1968).
A. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb,Phys. Rev. Lett. 58:2343 (1987).
W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. Douglas Stone,Phys. Rev. Lett. 58:2347 (1987).
J.-L. Pichard and G. Sarma,J. Phys. C 14:L127, L617 (1981).
J.-L. Pichard and G. André,Europhys. Lett. 2:477 (1986).
S. Ida, H. A. Weidenmüller, and J. A. Zuk,Phys. Rev. Lett. 64:583 (1990).
C. E. Román, T. H. Seligman, and J. J. M. Verbaarschot, T. H. Seligman, and J. J. M. Verbaarschot, inProceedings of the 4th International Conference on Quantum Chaos and the 2nd Colloquium on Statistical Nuclear Physics, T. H. Seligman and H. Nishioka, eds. (Springer, Berlin, 1986), pp. 131 and 256.
O. Bohigas and M.-J. Giannoni, inMathematical and Computational Methods in Nuclear Physics, J. Dehesa, J. Gomez, and A. Polls, eds. (Springer-Verlag, Berlin, 1984), p. 1.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Devillard, P. Statistics of transfer matrices for disordered quantum thin metallic slabs. J Stat Phys 62, 373–387 (1991). https://doi.org/10.1007/BF01020873
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01020873