Skip to main content
Log in

Statistics of transfer matrices for disordered quantum thin metallic slabs

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the quantum transport problem of a tight-binding Anderson model, the statistics of eigenvalues for the transfer matrices of thin disordered slabs is studied. Numerical simulations indicate that the probability distribution of nearest neighbor eigenvalue spacing and theΔ 3 statistics have already become close to that of the Gaussian orthogonal ensemble for sample lengths of the order of the mean free path, provided that transverse localization effects are not important. An intuitive argument is given why this should occur independently of the size of the matrix. Therefore, good mixing of the channels is not essential for obtaining Gaussian orthogonal ensemble type statistics and universal conductance fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Washburn and R. A. Webb,Adv. Phys. 35:375 (1986), and references therein.

  2. A. D. Stone,Phys. Rev. Lett. 54:2692 (1985).

    Google Scholar 

  3. P. A. Lee and A. D. Stone,Phys. Rev. Lett. 55:1622 (1985); P. A. Lee, A. D. Stone, and H. Fukuyama,Phys. Rev. B 35:1039 (1987).

    Google Scholar 

  4. B. L. Al'tshuler,Pis'ma Zh. Eksp. Teor. Fiz. 41:530 (1985) [JETP Lett. 41:648 (1985)]; B. L. Alt'shuler and D. E. Khmel'nitskii,Pis'ma Zh. Eksp. Teor. Fiz. 42:291 (1985) [JETP Lett. 42:359 (1985)]; B. L. Alt'sshuler and B. I. Shklovskii,Zh. Eksp. Teor. Fiz. 91:220 (1986) [Sov. Phys. JETP 64:127 (1986)].

    Google Scholar 

  5. Y. Imry,Europhys. Lett. 1:249 (1986).

    Google Scholar 

  6. P. A. Mello,Phys. Rev. Lett. 60:1089 (1988); P. A. Mello, P. Pereyra, and N. Kumar,Ann. Phys. 181:290 (1988).

    Google Scholar 

  7. K. A. Muttalib, J.-L. Pichard, and A. Douglas Stone,Phys. Rev. Lett. 59:2475 (1987).

    Google Scholar 

  8. P. A. Mello, E. Akkermans, and B. Shapiro,Phys. Rev. Lett. 61:459 (1988).

    Google Scholar 

  9. N. Giordano,Phys. Rev. B 38:4746 (1988);36:4190 (1987).

    Google Scholar 

  10. P. W. Anderson,Phys. Rev. B 23:4828 (1981).

    Google Scholar 

  11. D. S. Fisher and P. A. Lee,Phys. Rev. B 23:6851 (1981); P. A. Lee and D. S. Fisher,Phys. Rev. Lett. 47:882 (1981).

    Google Scholar 

  12. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas,Phys. Rev. Lett. 61:459 (1988).

    Google Scholar 

  13. F. J. Dyson,J. Math. Phys. 3:140 (1962).

    Google Scholar 

  14. M. L. Mehta,Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York, 1967).

    Google Scholar 

  15. R. Balian,Nuovo Cimento 57:183 (1968).

    Google Scholar 

  16. A. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb,Phys. Rev. Lett. 58:2343 (1987).

    Google Scholar 

  17. W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. Douglas Stone,Phys. Rev. Lett. 58:2347 (1987).

    Google Scholar 

  18. J.-L. Pichard and G. Sarma,J. Phys. C 14:L127, L617 (1981).

    Google Scholar 

  19. J.-L. Pichard and G. André,Europhys. Lett. 2:477 (1986).

    Google Scholar 

  20. S. Ida, H. A. Weidenmüller, and J. A. Zuk,Phys. Rev. Lett. 64:583 (1990).

    Google Scholar 

  21. C. E. Román, T. H. Seligman, and J. J. M. Verbaarschot, T. H. Seligman, and J. J. M. Verbaarschot, inProceedings of the 4th International Conference on Quantum Chaos and the 2nd Colloquium on Statistical Nuclear Physics, T. H. Seligman and H. Nishioka, eds. (Springer, Berlin, 1986), pp. 131 and 256.

    Google Scholar 

  22. O. Bohigas and M.-J. Giannoni, inMathematical and Computational Methods in Nuclear Physics, J. Dehesa, J. Gomez, and A. Polls, eds. (Springer-Verlag, Berlin, 1984), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devillard, P. Statistics of transfer matrices for disordered quantum thin metallic slabs. J Stat Phys 62, 373–387 (1991). https://doi.org/10.1007/BF01020873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020873

Key words

Navigation