Journal of Statistical Physics

, Volume 62, Issue 1–2, pp 257–267 | Cite as

A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator

  • Mark Pollicott


In this note we explain the rigorous mathematical arguments underlying some recent work of Artuso, Aurell and Cvitanovic on the Feigenbaum tangent operator. In particular, we attempt to clarify the advantages of introducing zeta functions through the ideas of Ruelle and Grothendieck.

Key words

Feigenbaum conjectures zeta functions transfer operators hyperbolic fixed points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Artuso, E. Aurell, and P. Cvitanovic, Recycling of strange sets II. Applications, preprint.Google Scholar
  2. 2.
    R. Bowen and O. Lanford, Zeta functions of restrictions of the shift transformation,Proc. Symp. Pure Math. Am. Math. Soc. 14:43–50 (1970).Google Scholar
  3. 3.
    M. Campanino, H. Epstein, and D. Ruelle, On Feigenbaum's functional equationgοg(λx)+λg(x)=0,Topology 21:125–129 (1982).Google Scholar
  4. 4.
    J.-P. Eckmann and H. Epstein, Bounds on the unstable eigenvalue for period doubling,Commun. Math. Phys. 128:427–435 (1990).Google Scholar
  5. 5.
    H. Epstein, New proofs of the existance of the Feigenbaum functions,Commun. Math. Phys. 106:393–426 (1986).Google Scholar
  6. 6.
    H. Epstein, Fixed points of composition operators II,Nonlinearity 2:305–310 (1988).Google Scholar
  7. 7.
    D. Fried, The zeta functions of Ruelle and Selberg I,Ann. Sci. Ecole Norm. Sup. 19:491–517 (1986).Google Scholar
  8. 8.
    A. Grothendieck, Espaces nucléaires,Mem. Am. Math. Soc. 16 (1955).Google Scholar
  9. 9.
    K. Khanin, Y. Sinai, and E. Vul, Feigenbaum universality and the thermodynamic formalism,Russ. Math. Surv. 39:1–40 (1984).Google Scholar
  10. 10.
    O. Lanford, Computer-assisted proofs in analysis,Proc. Int. Cong. Math. 1986(II):1385–1394.Google Scholar
  11. 11.
    D. Mayer, On a zeta-function related to the continued fraction transformation,Bull. Soc. Math. France 104:195–203 (1976).Google Scholar
  12. 12.
    D. Ruelle,Thermodynamic formalism (Addison-Wesley, Reading, Massachusetts, 1978).Google Scholar
  13. 13.
    D. Ruelle, Zeta functions for expanding maps and Anosov flows,Invent. Math. 34:231–242 (1976).Google Scholar
  14. 14.
    D. Sullivan, Quasi-conformal homeomorphisms in dynamics, topology and geometry,Proc. Int. Cong. Math. 1986(II):1216–1228.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Mark Pollicott
    • 1
  1. 1.Centro de Matematica, Faculdade de CienciasPraca Gomes TeixeiraPortoPortugal

Personalised recommendations