Advertisement

Journal of Statistical Physics

, Volume 62, Issue 1–2, pp 201–219 | Cite as

Classical “freezing” of fast rotations. A numerical test of the Boltzmann-Jeans conjecture

  • Oscar Baldan
  • Giancarlo Benettin
Articles

Abstract

We study numerically a very simple model representing a classical planar molecule, with only translational and rotational degrees of freedom, which collides with a fixed wall. On this model we test numerically an old conjecture by Boltzmann and Jeans, according to which the rate of the energy exchanges between the translational and the rotational degrees of freedom, due to collisions, decreases exponentially with the angular velocity of the molecule, giving rise to a purely classical phenomenon of “freezing” of fast rotations. Our results are in full agreement with the Boltzmann-Jeans conjecture. More precisely, we find that for each collision the average on the initial phase of the energy exchange, and the fluctuation, follow two different exponential laws; this fact turns out to have a rather delicate role in the approach of statistical equilibrium. A discussion of the numerical accuracy—which is rather high, since we are able to measure energy exchanges of one part over 1016—is also reported.

Key words

Numerical experiments exponential estimates equipartition times Boltzmann-Jeans conjecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Boltzmann,Nature 51:413 (1895).Google Scholar
  2. 2.
    J. H. Jeans,Phil. Mag. 6:279 (1903).Google Scholar
  3. 3.
    J. H. Jeans,Phil. Mag. 10:91 (1905).Google Scholar
  4. 4.
    G. Benettin, L. Galgani, and A. Giorgilli,Nature 311:444 (1984).Google Scholar
  5. 5.
    G. Benettin, Nekhoroshev-like results for Hamiltonian dynamical systems, inNon-Linear Evolution and Chaotic Phenomena, G. Gallavotti and P. F. Zweifel, eds. (Plenum Press, New York, 1988).Google Scholar
  6. 6.
    L. Galgani, Relaxation times and the foundations of classical statistical mechanics in the light of modern perturbation theory, inNon-Linear Evolution and Chaotic Phenomena, G. Gallavotti and P. F. Zweifel, eds. (Plenum Press, New York, 1988).Google Scholar
  7. 7.
    G. Benettin, A completely classical mechanism for the “freezing” of the high-frequency degrees of freedom, inChaos and Complexity, R. Livi, S. Ruffo, S. Ciliberto, and M. Buiatti, eds. (World Scientific, Singapore, 1988).Google Scholar
  8. 8.
    L. Landau and E. Teller,Physik. Z. Sowjetunion 11:18 (1936).Google Scholar
  9. 9.
    D. Rapp,J. Chem. Phys. 32:735 (1960).Google Scholar
  10. 10.
    T. M. O'Neil, P. G. Hjorth, B. Beck, J. Fajans, and J. H. Malmberg, Collisional relaxation of strongly magnetized pure electron plasma (theory and experiment), preprint.Google Scholar
  11. 11.
    G. Benettin, L. Galgani, and A. Giorgilli,Phys. Lett. A 120:23 (1987).Google Scholar
  12. 12.
    G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 113:87 (1987).Google Scholar
  13. 13.
    G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 121:557 (1989).Google Scholar
  14. 14.
    F. Fassó, Lie series methods for vector fields and Hamiltonian perturbation theory,J. Appl. Math. Phys. (ZAMP), in press.Google Scholar
  15. 15.
    G. Benettin and F. Fassó, Classical “freezing” of plane rotations: A proof of the Boltzmann-Jeans conjecture,J. Stat. Phys., to appear.Google Scholar
  16. 16.
    J. J. Erpenbeck and E. D. G. Cohen,Phys. Rev. A 38:3054 (1988).Google Scholar
  17. 17.
    H. J. C. Berendsen and W. F. Van Guntsen, Practical algorithms for dynamic simulations, inMolecular-Dynamics Simulation of Statistical-Mechanical Systems, G. Ciccotti and W. G. Hoover, eds. (North-Holland, Amsterdam, 1986).Google Scholar
  18. 18.
    J. Moser, Lectures on Hamiltonian systems,Mem. Am. Math. Soc. 81:1 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Oscar Baldan
    • 1
  • Giancarlo Benettin
    • 1
    • 2
  1. 1.Gruppo Nazionale di Fisica MatematicaDipartimento di Matematica Pura e Applicata dell'Università di PadovaItaly
  2. 2.Consorzio Interuniversitario Nazionale di Fisica della MateriaPadovaItaly

Personalised recommendations