Biotechnology Letters

, Volume 16, Issue 11, pp 1113–1118 | Cite as

Transitory plasmid instability during the exponential phase of growth of a recombinantEscherichia coli

  • D. Lamotte
  • A. Gschaedler
  • J. Boudrant
Article

Summary

The present results concern the recombinant bacteriaEscherichia coli HB101(GAPDH) which produces glyceraldehyde 3-phosphate dehydrogenase. An unusual phenomenon was noticed concerning the plasmid stability of this strain growing in batch culture. The determination of sensitivity to ampicillin, whose resistance is carried by the plasmid, has been tested as a function of time on Petri dishes containing increasing concentrations of ampicillin in a batch culture in a complex medium without any selection pressure. A transitory decrease in the percentage of resistant cells has been noted during the exponential phase of growth. This phenomenon corresponds to a momentary plasmid instability probably due to a transitory gap between the growth rate of the cell and the duplication rate of the plasmid.

Keywords

Growth Rate Petri Dish Ampicillin Bioorganic Chemistry Selection Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbas, P., Soberon X., Bolivar F. and Rodriguez R.L. (1988) (Rodriguez, R.L. and Denhardt D.T., Eds.), pp 5–41. Butterworths.Google Scholar
  2. Betenbaugh, M.J., Beaty, C. and Dhurjati, P. (1989) Biotechnol. Bioeng., 33, 1425–1436.Google Scholar
  3. Branlant, G., Flesch, G. and Branlant, C. (1983) Gene, 25, 1–7.Google Scholar
  4. Caulcott, C.A., Dunn, A., Robertson, H. A, Cooper, N.S., Brown, M.E. and Rhodes, P.M. (1987) J. Gen. Microbiol. 133, 1881–1889.Google Scholar
  5. Dennis, K., Srienc, F. and Bailey, J.E. (1985) Biotechnol. Bioeng., 27, 1490–1494.Google Scholar
  6. Ferdinand, W. (1964) Biochem. J., 92, 1978–1985.Google Scholar
  7. Gschaedler A. (1994) Ph D thesis, INPL, Nancy, France.Google Scholar
  8. Haigermoser, C., Chen, C.Q., Grohmann, E., Hrabak, O. and Schwab, H. (1993) J. Biotechnol., 28, 291–299.Google Scholar
  9. Helling, R.B., Kinney, T. and Adams, J. (1981) J. Gen. Microbiol., 123, 129–134.Google Scholar
  10. Jones, S.A. and Melling, J. (1984) FEMS Microbiol. Lett., 22, 239–243.Google Scholar
  11. Miller, G.L. (1959) Anal. Chem., 31, 3, 426–428.Google Scholar
  12. Mougin, A.C., Corbier, C., Soukri, A., Wonacott, A., Branlant, C. and Branlant G. (1988) Prot. Eng., 2, 45–48.Google Scholar
  13. Nancib, N. and Boudrant, J. (1992) Biotechnol. Lett., 14, 643–648.Google Scholar
  14. Nancib, N., Mosrati, R. and Boudrant, J. (1992) Biotechnol. Bioeng., 39, 1–10.Google Scholar
  15. Noack, D., Roth, M., Geuther, R., Muller, G., Undisz, K., Hoffmeier, C. and Caspar, S. (1981) Mol. Gen. Genet., 184, 121–124.Google Scholar
  16. Projan, S.J., Carleton S. and Novick R.P. (1983) Plasmid, 9, 182–190.Google Scholar
  17. Seo, J.H. and Bailey, J. (1985) Biotechnol. Bioeng., 27, 1668–1674.Google Scholar
  18. Weber, A.E. and San, K.Y. (1990) Biotechnol. Bioeng., 36, 727–736.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. Lamotte
    • 1
  • A. Gschaedler
    • 1
  • J. Boudrant
    • 1
  1. 1.Laboratoire des Sciences du Génie ChimiqueCNRS-ENSAIAVandoeuvre-Lès-NancyFrance

Personalised recommendations