Skip to main content
Log in

Thermodynamic criteria governing irreversible processes under the influence of small thermal fluctuations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Ventsel'-Freidlin probability estimates for small random perturbations of dynamical systems are used to generalize and justify the Onsager-Machlup irreversible thermodynamic variational description of Gaussian statistical distributions in the limit where Boltzmann's constant tends to zero for non-Gaussian diffusion processes. A Hamiltonian formulation is used to determine the maximum likelihood paths for the growth and decay of nonequilibrium fluctuations, in the same limit, subject to the imposed constraints. The paths of maximum likelihood manifest a symmetry in past and future and are the stationary conditions of the constrained thermodynamic variational principle of least dissipation of energy. The power balance equations supply the required constraints and the most likely path for the growth of a fluctuation is characterized by a negative entropy production. The entropy plays the role of the quasipotential of Ventsel' and Freidlin and exit from a bounded domain containing a deterministically stable steady state is made at that state on the boundary with maximum entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Onsager and S. Machlup,Phys. Rev. 91:1505 (1953); S. Machlup and L. Onsager,Phys. Rev. 91:1512(1931).

    Google Scholar 

  2. B. H. Lavenda,Found Phys. 9:405 (1979).

    Google Scholar 

  3. A. D. Ventsel' and M. I. Freidlin,Russ. Math. Surv. 25:1 (1970);Theory Probab. Appl. 17:269 (1972).

    Google Scholar 

  4. A. Friedmann,Stochastic Differential Equations and Applications, Vol. 2, Academic Press, New York (1976), Chap. 14.

    Google Scholar 

  5. D. Ludwig,SIAM (Soc. Ind. Appl. Math.) Rev. 17:605 (1975).

    Google Scholar 

  6. R. F. Anderson and S. Orey,Nagoya Math. J. 60:189 (1976).

    Google Scholar 

  7. B. J. Matkowsky and Z. Schuss,Bull. Am. Math. Soc. 82:321 (1976);SIAM (Soc. Ind. Appl. Math.)J. Appl. Math. 33:365 (1977); see also Z. Schuss,Theory and Applications of Stochastic Differential Equations, Wiley, New York (1980), Chap. 7.

    Google Scholar 

  8. R. G. Williams,SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 40:208 (1981).

    Google Scholar 

  9. B. H. Lavenda,Thermodynamics of Irreversible Processes, Macmillan, London/Halsted, New York (1978).

    Google Scholar 

  10. B. H. Lavenda, in preparation.

  11. E. Wong and M. Zakai,Int. J. Eng. Sci. 3:213 (1965).

    Google Scholar 

  12. R. L. Stratonovich,SIAM (Soc. Ind. Appl. Math.) J. Control 4:362 (1966); see also R. L. Stratonovich,Conditional Markov Processes and Their Application to the Theory of Optimal Control, American Elsevier, New York (1968), Chap. 2.

    Google Scholar 

  13. K. Itô,Memoir Am. Math. Soc. 4:1 (1951).

    Google Scholar 

  14. I. V. Girsanov,Theory Prob. Appl. 5:285 (1960).

    Google Scholar 

  15. B. H. Lavenda and E. Santamato,J. Math. Phys. 22:2926 (1981).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz,Statistical Physics, Pergamon Press, Oxford (1959), p. 377.

    Google Scholar 

  17. B. H. Lavenda,Rivista Nuovo Cimento 7:229 (1977).

    Google Scholar 

  18. Ref. 9, Chap. V.

    Google Scholar 

  19. Ref. 9, Chap. VI.

    Google Scholar 

  20. B. H. Lavenda and E. Santamato,Lett. Nuovo Cimento 26:27 (1979).

    Google Scholar 

  21. E. Santamato and B. H. Lavenda,The stochastic H theorem, submitted toJ. Math. Phys.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenda, B.H., Santamato, E. Thermodynamic criteria governing irreversible processes under the influence of small thermal fluctuations. J Stat Phys 29, 345–361 (1982). https://doi.org/10.1007/BF01020791

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020791

Key words

Navigation