Advertisement

Journal of Statistical Physics

, Volume 41, Issue 1–2, pp 37–74 | Cite as

Kinetic equation for a weakly interacting classical electron gas

  • M. C. Marchetti
  • T. R. Kirkpatrick
  • J. R. Dorfman
  • E. G. D. Cohen
Articles

Abstract

A kinetic equation is derived for the two-time phase space correlation function in a dilute classical electron gas in equilibrium. The derivation is based on a density expansion of the correlation function and the resummation of the most divergent terms in each order in the density. It is formally analogous to the ring summation used in the kinetic theory of neutral fluids. The kinetic equation obtained is consistent to first order in the plasma parameter and is the generalization of the linearized Balescu-Guersey-Lenard operator to describe spatially inhomogeneous equilibrium fluctuations. The importance of consistently treating static correlations when deriving a kinetic equation for an electron gas is stressed. A systematic derivation as described here is needed for a further generalization to a kinetic equation that includes mode-coupling effects. This will be presented in a future paper.

Key words

Electron gas Balescu-Guernsey-Lenard kinetic equation time correlation functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6:776 (1972);Phys. Rev. A 12:292 (1975).Google Scholar
  2. 2.
    M. C. Marchetti and T. R. Kirkpatrick,J. Stat. Phys. (1985), to appear.Google Scholar
  3. 3.
    R. Balescu,Phys. Fluids 3:52 (1962); see also R. Balescu, inEquilibrium and Nonequilibrium Statistical Mechanics (Wiley-Interscience, New York, 1975), pp. 630–643, and references therein.Google Scholar
  4. 4.
    J. T. Bartis and I. Oppenheim,Phys. Rev. A 8:3174 (1973).Google Scholar
  5. 5.
    R. L. Guernsey, inLectures in Theoretical Physics, Kinetic Theory, Vol. IXC, W. E. Brittin, ed., (Gordon and Breach, New York, 1967), pp. 147–169.Google Scholar
  6. 6.
    J. Krommes and C. Oberman,J. Plasma Phys. 16:193 (1976).Google Scholar
  7. 7.
    M. Baus,Physica 79A:377 (1975).Google Scholar
  8. 8.
    H. Gould and G. F. Mazenko,Phys. Rev. A 15:1274 (1977).Google Scholar
  9. 9.
    M. Baus and J. Wallenborn,J. Stat. Phys. 16:91 (1977).Google Scholar
  10. 10.
    J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).Google Scholar
  11. 11.
    M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).Google Scholar
  12. 12.
    J. R. Dorfman and E. G. D. Cohen,Int. J. Quant. Chem. 16:63 (1982).Google Scholar
  13. 13.
    J. E. Mayer and M. Goeppert-Mayer,Statistical Mechanics, 2nd ed. (Wiley, New York, 1977), Chap. 8.Google Scholar
  14. 14.
    J. P. Mondt,Ann. Phys. (Leipzig) 117:195 (1979).Google Scholar
  15. 15.
    R. Zwanzig,Phys. Rev. 129:486 (1963).Google Scholar
  16. 16.
    H. L. Friedman,Ionic Solution Theory (interscience, New York, 1962), pp. 132–137.Google Scholar
  17. 17.
    D. C. Montgomery and D. Tidman, inPlasma Kinetic Theory (McGraw-Hill, New York, 1964).Google Scholar
  18. 18.
    D. Pines and P. Nozières,The Theory of Quantum Liquids (Benjamin, New York, 1966).Google Scholar
  19. 19.
    T. O'Neil and N. Rostoker,Phys. Fluids 8:1109 (1965).Google Scholar
  20. 20.
    M. C. Marchetti, E. G. D. Cohen, T. R. Kirkpatrick, and J. R. Dorfman,J. Stat. Phys. 41:75 (1985), following paper.Google Scholar
  21. 21.
    G. E. Uhlenbeck and G. W. Ford, inStudies in Statistical Mechanics, Vol. I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland Publishing Co., Amsterdam, 1961), p. 123.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. C. Marchetti
    • 1
    • 2
  • T. R. Kirkpatrick
    • 1
  • J. R. Dorfman
    • 1
  • E. G. D. Cohen
    • 2
  1. 1.Department of Physics and Astronomy and Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.The Rockefeller UniversityNew York

Personalised recommendations